Cargando…

Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection

BACKGROUND: Individuals recovering from COVID-19 frequently experience persistent respiratory ailments, which are key elements of postacute sequelae of SARS-CoV-2 infection (PASC); however, little is known about the underlying biological factors that may direct lung recovery and the extent to which...

Descripción completa

Detalles Bibliográficos
Autores principales: Chun, Hyung J., Coutavas, Elias, Pine, Alexander B., Lee, Alfred I., Yu, Vanessa L., Shallow, Marcus K., Giovacchini, Coral X., Mathews, Anne M., Stephenson, Brian, Que, Loretta G., Lee, Patty J., Kraft, Bryan D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410030/
https://www.ncbi.nlm.nih.gov/pubmed/34111030
http://dx.doi.org/10.1172/jci.insight.148476
_version_ 1783747082017832960
author Chun, Hyung J.
Coutavas, Elias
Pine, Alexander B.
Lee, Alfred I.
Yu, Vanessa L.
Shallow, Marcus K.
Giovacchini, Coral X.
Mathews, Anne M.
Stephenson, Brian
Que, Loretta G.
Lee, Patty J.
Kraft, Bryan D.
author_facet Chun, Hyung J.
Coutavas, Elias
Pine, Alexander B.
Lee, Alfred I.
Yu, Vanessa L.
Shallow, Marcus K.
Giovacchini, Coral X.
Mathews, Anne M.
Stephenson, Brian
Que, Loretta G.
Lee, Patty J.
Kraft, Bryan D.
author_sort Chun, Hyung J.
collection PubMed
description BACKGROUND: Individuals recovering from COVID-19 frequently experience persistent respiratory ailments, which are key elements of postacute sequelae of SARS-CoV-2 infection (PASC); however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity. METHODS: We performed a prospective cohort study of individuals with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors. RESULTS: Sixty-one participants were enrolled across 2 academic medical centers at a median of 9 weeks (interquartile range, 6–10 weeks) after COVID-19 illness: n = 13 participants (21%) had mild COVID-19 and were not hospitalized, n = 30 participants (49%) were hospitalized but were considered noncritical, and n = 18 participants (30%) were hospitalized and in the intensive care unit (ICU). Fifty-three participants (85%) had lingering symptoms, most commonly dyspnea (69%) and cough (58%). Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO) declined as COVID-19 severity increased (P < 0.05) but these values did not correlate with respiratory symptoms. Partial least-squares discriminant analysis of plasma biomarker profiles clustered participants by past COVID-19 severity. Lipocalin-2 (LCN2), MMP-7, and HGF identified by our analysis were significantly higher in the ICU group (P < 0.05), inversely correlated with FVC and DLCO (P < 0.05), and were confirmed in a separate validation cohort (n = 53). CONCLUSION: Subjective respiratory symptoms are common after acute COVID-19 illness but do not correlate with COVID-19 severity or pulmonary function. Host response profiles reflecting neutrophil activation (LCN2), fibrosis signaling (MMP-7), and alveolar repair (HGF) track with lung impairment and may be novel therapeutic or prognostic targets. FUNDING: National Heart, Lung, and Blood Institute (K08HL130557 and R01HL142818), American Heart Association (Transformational Project Award), the DeLuca Foundation Award, a donation from Jack Levin to the Benign Hematology Program at Yale University, and Duke University.
format Online
Article
Text
id pubmed-8410030
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-84100302021-09-07 Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection Chun, Hyung J. Coutavas, Elias Pine, Alexander B. Lee, Alfred I. Yu, Vanessa L. Shallow, Marcus K. Giovacchini, Coral X. Mathews, Anne M. Stephenson, Brian Que, Loretta G. Lee, Patty J. Kraft, Bryan D. JCI Insight Clinical Medicine BACKGROUND: Individuals recovering from COVID-19 frequently experience persistent respiratory ailments, which are key elements of postacute sequelae of SARS-CoV-2 infection (PASC); however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity. METHODS: We performed a prospective cohort study of individuals with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors. RESULTS: Sixty-one participants were enrolled across 2 academic medical centers at a median of 9 weeks (interquartile range, 6–10 weeks) after COVID-19 illness: n = 13 participants (21%) had mild COVID-19 and were not hospitalized, n = 30 participants (49%) were hospitalized but were considered noncritical, and n = 18 participants (30%) were hospitalized and in the intensive care unit (ICU). Fifty-three participants (85%) had lingering symptoms, most commonly dyspnea (69%) and cough (58%). Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO) declined as COVID-19 severity increased (P < 0.05) but these values did not correlate with respiratory symptoms. Partial least-squares discriminant analysis of plasma biomarker profiles clustered participants by past COVID-19 severity. Lipocalin-2 (LCN2), MMP-7, and HGF identified by our analysis were significantly higher in the ICU group (P < 0.05), inversely correlated with FVC and DLCO (P < 0.05), and were confirmed in a separate validation cohort (n = 53). CONCLUSION: Subjective respiratory symptoms are common after acute COVID-19 illness but do not correlate with COVID-19 severity or pulmonary function. Host response profiles reflecting neutrophil activation (LCN2), fibrosis signaling (MMP-7), and alveolar repair (HGF) track with lung impairment and may be novel therapeutic or prognostic targets. FUNDING: National Heart, Lung, and Blood Institute (K08HL130557 and R01HL142818), American Heart Association (Transformational Project Award), the DeLuca Foundation Award, a donation from Jack Levin to the Benign Hematology Program at Yale University, and Duke University. American Society for Clinical Investigation 2021-07-22 /pmc/articles/PMC8410030/ /pubmed/34111030 http://dx.doi.org/10.1172/jci.insight.148476 Text en © 2021 Chun et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Clinical Medicine
Chun, Hyung J.
Coutavas, Elias
Pine, Alexander B.
Lee, Alfred I.
Yu, Vanessa L.
Shallow, Marcus K.
Giovacchini, Coral X.
Mathews, Anne M.
Stephenson, Brian
Que, Loretta G.
Lee, Patty J.
Kraft, Bryan D.
Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection
title Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection
title_full Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection
title_fullStr Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection
title_full_unstemmed Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection
title_short Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection
title_sort immunofibrotic drivers of impaired lung function in postacute sequelae of sars-cov-2 infection
topic Clinical Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410030/
https://www.ncbi.nlm.nih.gov/pubmed/34111030
http://dx.doi.org/10.1172/jci.insight.148476
work_keys_str_mv AT chunhyungj immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT coutavaselias immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT pinealexanderb immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT leealfredi immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT yuvanessal immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT shallowmarcusk immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT giovacchinicoralx immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT mathewsannem immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT stephensonbrian immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT quelorettag immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT leepattyj immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection
AT kraftbryand immunofibroticdriversofimpairedlungfunctioninpostacutesequelaeofsarscov2infection