Cargando…
Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low‐dimensional space of brain dynamics
Large‐scale brain dynamics are believed to lie in a latent, low‐dimensional space. Typically, the embeddings of brain scans are derived independently from different cognitive tasks or resting‐state data, ignoring a potentially large—and shared—portion of this space. Here, we establish that a shared,...
Autores principales: | Gao, Siyuan, Mishne, Gal, Scheinost, Dustin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410525/ https://www.ncbi.nlm.nih.gov/pubmed/34184812 http://dx.doi.org/10.1002/hbm.25561 |
Ejemplares similares
-
Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques
por: Casanova, Ramon, et al.
Publicado: (2021) -
Using Low-Dimensional Manifolds to Map Relationships Between Dynamic Brain Networks
por: Bahrami, Mohsen, et al.
Publicado: (2019) -
A robust nonlinear low-dimensional manifold for single cell RNA-seq data
por: Verma, Archit, et al.
Publicado: (2020) -
Anatytic functions and manifolds in infinite dimensional spaces
por: Coeuré, Gérard
Publicado: (1974) -
Aspects of low dimensional manifolds
por: Morita, S, et al.
Publicado: (1992)