Cargando…
Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification
Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group‐level are often not observed at the individual level. Among the different approaches aiming to study w...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410550/ https://www.ncbi.nlm.nih.gov/pubmed/34322947 http://dx.doi.org/10.1002/hbm.25574 |
_version_ | 1783747135868502016 |
---|---|
author | Elad, Doron Cetin‐Karayumak, Suheyla Zhang, Fan Cho, Kang Ik K. Lyall, Amanda E. Seitz‐Holland, Johanna Ben‐Ari, Rami Pearlson, Godfrey D. Tamminga, Carol A. Sweeney, John A. Clementz, Brett A. Schretlen, David J. Viher, Petra Verena Stegmayer, Katharina Walther, Sebastian Lee, Jungsun Crow, Tim J. James, Anthony Voineskos, Aristotle N. Buchanan, Robert W. Szeszko, Philip R. Malhotra, Anil K. Keshavan, Matcheri S. Shenton, Martha E. Rathi, Yogesh Bouix, Sylvain Sochen, Nir Kubicki, Marek R. Pasternak, Ofer |
author_facet | Elad, Doron Cetin‐Karayumak, Suheyla Zhang, Fan Cho, Kang Ik K. Lyall, Amanda E. Seitz‐Holland, Johanna Ben‐Ari, Rami Pearlson, Godfrey D. Tamminga, Carol A. Sweeney, John A. Clementz, Brett A. Schretlen, David J. Viher, Petra Verena Stegmayer, Katharina Walther, Sebastian Lee, Jungsun Crow, Tim J. James, Anthony Voineskos, Aristotle N. Buchanan, Robert W. Szeszko, Philip R. Malhotra, Anil K. Keshavan, Matcheri S. Shenton, Martha E. Rathi, Yogesh Bouix, Sylvain Sochen, Nir Kubicki, Marek R. Pasternak, Ofer |
author_sort | Elad, Doron |
collection | PubMed |
description | Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group‐level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject‐level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject‐level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free‐water) dMRI measures, were calculated by means of age and sex‐adjusted z‐scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z‐scores than are found with raw values (p < .001), predictions based on summary z‐score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject‐level classification. |
format | Online Article Text |
id | pubmed-8410550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84105502021-09-03 Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification Elad, Doron Cetin‐Karayumak, Suheyla Zhang, Fan Cho, Kang Ik K. Lyall, Amanda E. Seitz‐Holland, Johanna Ben‐Ari, Rami Pearlson, Godfrey D. Tamminga, Carol A. Sweeney, John A. Clementz, Brett A. Schretlen, David J. Viher, Petra Verena Stegmayer, Katharina Walther, Sebastian Lee, Jungsun Crow, Tim J. James, Anthony Voineskos, Aristotle N. Buchanan, Robert W. Szeszko, Philip R. Malhotra, Anil K. Keshavan, Matcheri S. Shenton, Martha E. Rathi, Yogesh Bouix, Sylvain Sochen, Nir Kubicki, Marek R. Pasternak, Ofer Hum Brain Mapp Research Articles Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group‐level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject‐level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject‐level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free‐water) dMRI measures, were calculated by means of age and sex‐adjusted z‐scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z‐scores than are found with raw values (p < .001), predictions based on summary z‐score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject‐level classification. John Wiley & Sons, Inc. 2021-07-29 /pmc/articles/PMC8410550/ /pubmed/34322947 http://dx.doi.org/10.1002/hbm.25574 Text en © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Elad, Doron Cetin‐Karayumak, Suheyla Zhang, Fan Cho, Kang Ik K. Lyall, Amanda E. Seitz‐Holland, Johanna Ben‐Ari, Rami Pearlson, Godfrey D. Tamminga, Carol A. Sweeney, John A. Clementz, Brett A. Schretlen, David J. Viher, Petra Verena Stegmayer, Katharina Walther, Sebastian Lee, Jungsun Crow, Tim J. James, Anthony Voineskos, Aristotle N. Buchanan, Robert W. Szeszko, Philip R. Malhotra, Anil K. Keshavan, Matcheri S. Shenton, Martha E. Rathi, Yogesh Bouix, Sylvain Sochen, Nir Kubicki, Marek R. Pasternak, Ofer Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification |
title | Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification |
title_full | Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification |
title_fullStr | Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification |
title_full_unstemmed | Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification |
title_short | Improving the predictive potential of diffusion MRI in schizophrenia using normative models—Towards subject‐level classification |
title_sort | improving the predictive potential of diffusion mri in schizophrenia using normative models—towards subject‐level classification |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410550/ https://www.ncbi.nlm.nih.gov/pubmed/34322947 http://dx.doi.org/10.1002/hbm.25574 |
work_keys_str_mv | AT eladdoron improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT cetinkarayumaksuheyla improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT zhangfan improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT chokangikk improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT lyallamandae improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT seitzhollandjohanna improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT benarirami improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT pearlsongodfreyd improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT tammingacarola improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT sweeneyjohna improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT clementzbretta improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT schretlendavidj improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT viherpetraverena improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT stegmayerkatharina improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT walthersebastian improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT leejungsun improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT crowtimj improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT jamesanthony improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT voineskosaristotlen improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT buchananrobertw improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT szeszkophilipr improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT malhotraanilk improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT keshavanmatcheris improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT shentonmarthae improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT rathiyogesh improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT bouixsylvain improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT sochennir improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT kubickimarekr improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification AT pasternakofer improvingthepredictivepotentialofdiffusionmriinschizophreniausingnormativemodelstowardssubjectlevelclassification |