Cargando…
Longitudinal white matter changes associated with cognitive training
Improvements in behavior are known to be accompanied by both structural and functional changes in the brain. However, whether those changes lead to more general improvements, beyond the behavior being trained, remains a contentious issue. We investigated whether training on one of two cognitive task...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410562/ https://www.ncbi.nlm.nih.gov/pubmed/34268814 http://dx.doi.org/10.1002/hbm.25580 |
_version_ | 1783747138714337280 |
---|---|
author | Nichols, Emily Sophia Erez, Jonathan Stojanoski, Bobby Lyons, Kathleen Michelle Witt, Suzanne Theisen Mace, Charlotte Anna Khalid, Sameera Owen, Adrian Mark |
author_facet | Nichols, Emily Sophia Erez, Jonathan Stojanoski, Bobby Lyons, Kathleen Michelle Witt, Suzanne Theisen Mace, Charlotte Anna Khalid, Sameera Owen, Adrian Mark |
author_sort | Nichols, Emily Sophia |
collection | PubMed |
description | Improvements in behavior are known to be accompanied by both structural and functional changes in the brain. However, whether those changes lead to more general improvements, beyond the behavior being trained, remains a contentious issue. We investigated whether training on one of two cognitive tasks would lead to either near transfer (that is, improvements on a quantifiably similar task) or far transfer (that is, improvements on a quantifiably different task), and furthermore, if such changes did occur, what the underlying neural mechanisms might be. Healthy adults (n = 16, 15 females) trained on either a verbal inhibitory control task or a visuospatial working memory task for 4 weeks, over the course of which they received five diffusion tensor imaging scans. Two additional tasks served as measures of near and far transfer. Behaviorally, participants improved on the task that they trained on, but did not improve on cognitively similar tests (near transfer), nor cognitively dissimilar tests (far transfer). Extensive changes to white matter microstructure were observed, with verbal inhibitory control training leading to changes in a left‐lateralized network of frontotemporal and occipitofrontal tracts, and visuospatial working memory training leading to changes in right‐lateralized frontoparietal tracts. Very little overlap was observed in changes between the two training groups. On the basis of these results, we suggest that near and far transfer were not observed because the changes in white matter tracts associated with training on each task are almost entirely nonoverlapping with, and therefore afford no advantages for, the untrained tasks. |
format | Online Article Text |
id | pubmed-8410562 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84105622021-09-03 Longitudinal white matter changes associated with cognitive training Nichols, Emily Sophia Erez, Jonathan Stojanoski, Bobby Lyons, Kathleen Michelle Witt, Suzanne Theisen Mace, Charlotte Anna Khalid, Sameera Owen, Adrian Mark Hum Brain Mapp Research Articles Improvements in behavior are known to be accompanied by both structural and functional changes in the brain. However, whether those changes lead to more general improvements, beyond the behavior being trained, remains a contentious issue. We investigated whether training on one of two cognitive tasks would lead to either near transfer (that is, improvements on a quantifiably similar task) or far transfer (that is, improvements on a quantifiably different task), and furthermore, if such changes did occur, what the underlying neural mechanisms might be. Healthy adults (n = 16, 15 females) trained on either a verbal inhibitory control task or a visuospatial working memory task for 4 weeks, over the course of which they received five diffusion tensor imaging scans. Two additional tasks served as measures of near and far transfer. Behaviorally, participants improved on the task that they trained on, but did not improve on cognitively similar tests (near transfer), nor cognitively dissimilar tests (far transfer). Extensive changes to white matter microstructure were observed, with verbal inhibitory control training leading to changes in a left‐lateralized network of frontotemporal and occipitofrontal tracts, and visuospatial working memory training leading to changes in right‐lateralized frontoparietal tracts. Very little overlap was observed in changes between the two training groups. On the basis of these results, we suggest that near and far transfer were not observed because the changes in white matter tracts associated with training on each task are almost entirely nonoverlapping with, and therefore afford no advantages for, the untrained tasks. John Wiley & Sons, Inc. 2021-07-16 /pmc/articles/PMC8410562/ /pubmed/34268814 http://dx.doi.org/10.1002/hbm.25580 Text en © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Nichols, Emily Sophia Erez, Jonathan Stojanoski, Bobby Lyons, Kathleen Michelle Witt, Suzanne Theisen Mace, Charlotte Anna Khalid, Sameera Owen, Adrian Mark Longitudinal white matter changes associated with cognitive training |
title | Longitudinal white matter changes associated with cognitive training |
title_full | Longitudinal white matter changes associated with cognitive training |
title_fullStr | Longitudinal white matter changes associated with cognitive training |
title_full_unstemmed | Longitudinal white matter changes associated with cognitive training |
title_short | Longitudinal white matter changes associated with cognitive training |
title_sort | longitudinal white matter changes associated with cognitive training |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410562/ https://www.ncbi.nlm.nih.gov/pubmed/34268814 http://dx.doi.org/10.1002/hbm.25580 |
work_keys_str_mv | AT nicholsemilysophia longitudinalwhitematterchangesassociatedwithcognitivetraining AT erezjonathan longitudinalwhitematterchangesassociatedwithcognitivetraining AT stojanoskibobby longitudinalwhitematterchangesassociatedwithcognitivetraining AT lyonskathleenmichelle longitudinalwhitematterchangesassociatedwithcognitivetraining AT wittsuzannetheisen longitudinalwhitematterchangesassociatedwithcognitivetraining AT macecharlotteanna longitudinalwhitematterchangesassociatedwithcognitivetraining AT khalidsameera longitudinalwhitematterchangesassociatedwithcognitivetraining AT owenadrianmark longitudinalwhitematterchangesassociatedwithcognitivetraining |