Cargando…
Wavelet geographically weighted regression for spectroscopic modelling of soil properties
Soil properties, such as organic carbon, pH and clay content, are critical indicators of ecosystem function. Visible–near infrared (vis–NIR) reflectance spectroscopy has been widely used to cost-efficiently estimate such soil properties. Multivariate modelling, such as partial least squares regressi...
Autores principales: | Song, Yongze, Shen, Zefang, Wu, Peng, Viscarra Rossel, R. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410793/ https://www.ncbi.nlm.nih.gov/pubmed/34471173 http://dx.doi.org/10.1038/s41598-021-96772-z |
Ejemplares similares
-
Automated spectroscopic modelling with optimised convolutional neural networks
por: Shen, Zefang, et al.
Publicado: (2021) -
Evaluation of Two Portable Hyperspectral-Sensor-Based Instruments to Predict Key Soil Properties in Canadian Soils †
por: Dhawale, Nandkishor M., et al.
Publicado: (2022) -
Geographically weighted temporally correlated logistic regression model
por: Liu, Yang, et al.
Publicado: (2018) -
Assessment of the Effect of Soil Sample Preparation, Water Content and Excitation Time on Proximal X-ray Fluorescence Sensing
por: Li, Shuo, et al.
Publicado: (2022) -
A modification to geographically weighted regression
por: Leong, Yin-Yee, et al.
Publicado: (2017)