Cargando…
AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function
Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithm...
Autores principales: | Pham, Tri-Cong, Luong, Chi-Mai, Hoang, Van-Dung, Doucet, Antoine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410796/ https://www.ncbi.nlm.nih.gov/pubmed/34471174 http://dx.doi.org/10.1038/s41598-021-96707-8 |
Ejemplares similares
-
Hairfluencer social media trends every dermatologist should know in 2021
por: Paiewonsky, Briana, et al.
Publicado: (2022) -
Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification
por: Nugroho, Erwin Setyo, et al.
Publicado: (2023) -
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
por: Maron, Roman C, et al.
Publicado: (2020) -
Coronavirus Disease of 2019 (COVID-19) Facts and Figures: What Every Dermatologist Should Know at this Hour of Need
por: Manchanda, Yashpal, et al.
Publicado: (2020) -
AI-based multi-PRS models outperform classical single-PRS models
por: Klau, Jan Henric, et al.
Publicado: (2023)