Cargando…
Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
Streamflow (Q(flow)) prediction is one of the essential steps for the reliable and robust water resources planning and management. It is highly vital for hydropower operation, agricultural planning, and flood control. In this study, the convolution neural network (CNN) and Long-Short-term Memory net...
Autores principales: | Ghimire, Sujan, Yaseen, Zaher Mundher, Farooque, Aitazaz A., Deo, Ravinesh C., Zhang, Ji, Tao, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410863/ https://www.ncbi.nlm.nih.gov/pubmed/34471166 http://dx.doi.org/10.1038/s41598-021-96751-4 |
Ejemplares similares
-
Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction
por: Ali, Mumtaz, et al.
Publicado: (2022) -
Gravitational Wave-Signal Recognition Model Based on Fourier Transform and Convolutional Neural Network
por: Zhang, Hao, et al.
Publicado: (2022) -
Graph neural network for integrated water network partitioning and dynamic district metered areas
por: Fu, Minglei, et al.
Publicado: (2022) -
Machine learning models development for shear strength prediction of reinforced concrete beam: a comparative study
por: Yaseen, Zaher Mundher
Publicado: (2023) -
Ensemble streamflow forecasting based on variational mode decomposition and long short term memory
por: Sun, Xiaomei, et al.
Publicado: (2022)