Cargando…
Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy
The manual reading of capsule endoscopy (CE) videos in small bowel disease diagnosis is time-intensive. Algorithms introduced to automate this process are premature for real clinical applications, and multi-diagnosis using these methods has not been sufficiently validated. Therefore, we developed a...
Autores principales: | Kim, Sang Hoon, Hwang, Youngbae, Oh, Dong Jun, Nam, Ji Hyung, Kim, Ki Bae, Park, Junseok, Song, Hyun Joo, Lim, Yun Jeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410868/ https://www.ncbi.nlm.nih.gov/pubmed/34471156 http://dx.doi.org/10.1038/s41598-021-96748-z |
Ejemplares similares
-
Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy
por: Nam, Ji Hyung, et al.
Publicado: (2021) -
Artificial intelligence that determines the clinical significance of capsule endoscopy images can increase the efficiency of reading
por: Park, Junseok, et al.
Publicado: (2020) -
3D reconstruction of small bowel lesions using stereo camera-based capsule endoscopy
por: Nam, Seung-Joo, et al.
Publicado: (2020) -
Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now?
por: Hwang, Youngbae, et al.
Publicado: (2018) -
Recent Development of Computer Vision Technology to Improve Capsule Endoscopy
por: Park, Junseok, et al.
Publicado: (2019)