Cargando…
3D cephalometric landmark detection by multiple stage deep reinforcement learning
The lengthy time needed for manual landmarking has delayed the widespread adoption of three-dimensional (3D) cephalometry. We here propose an automatic 3D cephalometric annotation system based on multi-stage deep reinforcement learning (DRL) and volume-rendered imaging. This system considers geometr...
Autores principales: | Kang, Sung Ho, Jeon, Kiwan, Kang, Sang-Hoon, Lee, Sang-Hwy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410904/ https://www.ncbi.nlm.nih.gov/pubmed/34471202 http://dx.doi.org/10.1038/s41598-021-97116-7 |
Ejemplares similares
-
A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography
por: Yun, Hye Sun, et al.
Publicado: (2022) -
A fully deep learning model for the automatic identification of cephalometric landmarks
por: Kim, Young Hyun, et al.
Publicado: (2021) -
Deep learning for cephalometric landmark detection: systematic review and meta-analysis
por: Schwendicke, Falk, et al.
Publicado: (2021) -
Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis
por: Serafin, Marco, et al.
Publicado: (2023) -
Effectiveness of Human–Artificial Intelligence Collaboration in Cephalometric Landmark Detection
por: Le, Van Nhat Thang, et al.
Publicado: (2022)