Cargando…
Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions
Despite recent advances in high-throughput combinatorial mutagenesis assays, the number of labeled sequences available to predict molecular functions has remained small for the vastness of the sequence space combined with the ruggedness of many fitness functions. While deep neural networks (DNNs) ca...
Autores principales: | Aghazadeh, Amirali, Nisonoff, Hunter, Ocal, Orhan, Brookes, David H., Huang, Yijie, Koyluoglu, O. Ozan, Listgarten, Jennifer, Ramchandran, Kannan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410946/ https://www.ncbi.nlm.nih.gov/pubmed/34471113 http://dx.doi.org/10.1038/s41467-021-25371-3 |
Ejemplares similares
-
CRISPRL and: Interpretable large-scale inference of DNA repair landscape based on a spectral approach
por: Aghazadeh, Amirali, et al.
Publicado: (2020) -
On the sparsity of fitness functions and implications for learning
por: Brookes, David H., et al.
Publicado: (2021) -
An Exhaustive Epistatic SNP Association Analysis on Expanded Wellcome Trust Data
por: Lippert, Christoph, et al.
Publicado: (2013) -
CORRIGENDUM: An Exhaustive Epistatic SNP Association Analysis on Expanded Wellcome Trust Data
por: Lippert, Christoph, et al.
Publicado: (2013) -
Large sample size and nonlinear sparse models outline epistatic effects in inflammatory bowel disease
por: Verplaetse, Nora, et al.
Publicado: (2023)