Cargando…

Tissue-specific DamID protocol using nanopore sequencing

DNA adenine methylation identification (DamID) is a powerful method to determine DNA binding profiles of proteins at a genomic scale. The method leverages the fusion between a protein of interest and the Dam methyltransferase of E. coli, which methylates proximal DNA in vivo. Here, we present an opt...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez-Saldivar, Georgina, Glauser, Dominique A., Meister, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Journal of Biological Methods 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411031/
https://www.ncbi.nlm.nih.gov/pubmed/34514013
http://dx.doi.org/10.14440/jbm.2021.362
Descripción
Sumario:DNA adenine methylation identification (DamID) is a powerful method to determine DNA binding profiles of proteins at a genomic scale. The method leverages the fusion between a protein of interest and the Dam methyltransferase of E. coli, which methylates proximal DNA in vivo. Here, we present an optimized procedure, which was developed for tissue-specific analyses in Caenorhabditis elegans and successfully used to footprint genes actively transcribed by RNA polymerases and to map transcription factor binding in gene regulatory regions. The present protocol details C. elegans-specific steps involved in the preparation of transgenic lines and genomic DNA samples, as well as broadly applicable steps for the DamID procedure, including the isolation of methylated DNA fragments, the preparation of multiplexed libraries, Nanopore sequencing, and data analysis. Two distinctive features of the approach are (i) the use of an efficient recombination-based strategy to selectively analyze rare cell types and (ii) the use of Nanopore sequencing, which streamlines the process. The method allows researchers to go from genomic DNA samples to sequencing results in less than a week, while being sensitive enough to report reliable DNA footprints in cell types as rare as 2 cells per animal.