Cargando…
Characterization and modulation of anti-αβTCR antibodies and their respective binding sites at the βTCR chain to enrich engineered T cells
T cell engineering strategies offer cures to patients and have entered clinical practice with chimeric antibody-based receptors; αβT cell receptor (αβTCR)-based strategies are, however, lagging behind. To allow a more rapid and successful translation to successful concepts also using αβTCRs for engi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411211/ https://www.ncbi.nlm.nih.gov/pubmed/34514030 http://dx.doi.org/10.1016/j.omtm.2021.06.011 |
Sumario: | T cell engineering strategies offer cures to patients and have entered clinical practice with chimeric antibody-based receptors; αβT cell receptor (αβTCR)-based strategies are, however, lagging behind. To allow a more rapid and successful translation to successful concepts also using αβTCRs for engineering, incorporating a method for the purification of genetically modified T cells, as well as engineered T cell deletion after transfer into patients, could be beneficial. This would allow increased efficacy, reduced potential side effects, and improved safety of newly to-be-tested lead structures. By characterizing the antigen-binding interface of a good manufacturing process (GMP)-grade anti-αβTCR antibody, usually used for depletion of αβT cells from stem cell transplantation products, we developed a strategy that allows for the purification of untouched αβTCR-engineered immune cells by changing 2 amino acids only in the TCRβ chain constant domain of introduced TCR chains. Alternatively, we engineered an antibody that targets an extended mutated interface of 9 amino acids in the TCRβ chain constant domain and provides the opportunity to further develop depletion strategies of engineered immune cells. |
---|