Cargando…

Sensory nerves: A driver of the vicious cycle in bone metastasis?

Bone is one of the preferential target organs of cancer metastasis. Bone metastasis is associated with various complications, of which bone pain is most common and debilitating. The cancer-associated bone pain (CABP) is induced as a consequence of increased neurogenesis, reprogramming and axonogenes...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoneda, Toshiyuki, Hiasa, Masahiro, Okui, Tatsuo, Hata, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411232/
https://www.ncbi.nlm.nih.gov/pubmed/34504741
http://dx.doi.org/10.1016/j.jbo.2021.100387
Descripción
Sumario:Bone is one of the preferential target organs of cancer metastasis. Bone metastasis is associated with various complications, of which bone pain is most common and debilitating. The cancer-associated bone pain (CABP) is induced as a consequence of increased neurogenesis, reprogramming and axonogenesis of sensory nerves (SNs) in harmony with sensitization and excitation of SNs in response to the tumor microenvironment created in bone. Importantly, CABP is associated with increased mortality, of which precise cellular and molecular mechanism remains poorly understood. Bone is densely innervated by autonomic nerves (ANs) (sympathetic and parasympathetic nerves) and SNs. Recent studies have shown that the nerves innervating the tumor microenvironment establish intimate communications with tumors, producing various stimuli for tumors to progress and disseminate. In this review, our current understanding of the role of SNs innervating bone in the pathophysiology of CABP will be overviewed. Then the hypothesis that SNs facilitate cancer progression in bone will be discussed in conjunction with our recent findings that SNs play an important role not only in the induction of CABP but also the progression of bone metastasis using a preclinical model of CABP. It is suggested that SNs are a critical component of the bone microenvironment that drives the vicious cycle between bone and cancer to progress bone metastasis. Suppression of the activity of bone-innervating SNs may have potential therapeutic effects on the progression of bone metastasis and induction of CABP.