Cargando…

Implantation of an Innovative Intracardiac Microcomputer System for Web-Based Real-Time Monitoring of Heart Failure: Usability and Patients’ Attitudes

BACKGROUND: Heart failure (HF) management guided by the measurement of intracardiac and pulmonary pressure values obtained through innovative permanent intracardiac microsensors has been recently proposed as a valid strategy to individualize treatment and anticipate hemodynamic destabilization. Thes...

Descripción completa

Detalles Bibliográficos
Autores principales: D´Ancona, Giuseppe, Murero, Monica, Feickert, Sebastian, Kaplan, Hilmi, Öner, Alper, Ortak, Jasmin, Ince, Hueseyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411428/
https://www.ncbi.nlm.nih.gov/pubmed/33881400
http://dx.doi.org/10.2196/21055
Descripción
Sumario:BACKGROUND: Heart failure (HF) management guided by the measurement of intracardiac and pulmonary pressure values obtained through innovative permanent intracardiac microsensors has been recently proposed as a valid strategy to individualize treatment and anticipate hemodynamic destabilization. These sensors have potential to reduce patient hospitalization rates and optimize quality of life. OBJECTIVE: The aim of this study was to evaluate the usability and patients’ attitudes toward a new permanent intracardiac device implanted to remotely monitor left intra-atrial pressures (V-LAP, Vectorious Medical Technologies, Tel Aviv, Israel) in patients with chronic HF. METHODS: The V-LAP system is a miniaturized sensor implanted percutaneously across the interatrial septum. The system communicates wirelessly with a “companion device” (a wearable belt) that is placed on the patient’s chest at the time of acquisition/transmission of left heart pressure measurements. At first follow-up after implantation, the patients and health care providers were asked to fill out a questionnaire on the usability of the system, ease in performing the various required tasks (data acquisition and transmission), and overall satisfaction. Replies to the questions were mainly given using a 5-point Likert scale (1: very poor, 2: poor, 3: average, 4: good, 5: excellent). Further patient follow-ups were performed at 3, 6, and 12 months. RESULTS: Use and acceptance of the first 14 patients receiving the V-LAP technology worldwide and related health care providers have been analyzed to date. No periprocedural morbidity/mortality was observed. Before discharge, a tailored educational session was performed after device implantation with the patients and their health care providers. At the first follow-up, the mean score for overall comfort in technology use was 3.7 (SD 1.2) with 93% (13/14) of patients succeeding in applying and operating the system independently. For health care providers, the mean score for overall ease and comfort in use of the technology was 4.2 (SD 0.8). No significant differences were found between the patients’ and health care providers’ replies to the questionnaires. There was a general trend for higher scores in patients’ usability reports at later follow-ups, in which the score related to overall comfort with using the technology increased from 3.0 (SD 1.4) to 4.0 (SD 0.7) (P=.40) and comfort with wearing and adjusting the measuring thoracic belt increased from 2.8 (SD 1.0) to 4.2 (SD 0.4) (P=.02). CONCLUSIONS: Despite the gravity of their HF pathology and the complexity of their comorbid profile, patients are comfortable in using the V-LAP technology and, in the majority of cases, they can correctly and consistently acquire and transmit hemodynamic data. Although the overall patient/care provider satisfaction with the V-LAP system seems to be acceptable, improvements can be achieved after ameliorating the design of the measuring tools. TRIAL REGISTRATION: ClincalTrials.gov NCT03775161; https://clinicaltrials.gov/ct2/show/NCT03775161