Cargando…
Predicting Cardiovascular Risk Using Social Media Data: Performance Evaluation of Machine-Learning Models
BACKGROUND: Current atherosclerotic cardiovascular disease (ASCVD) predictive models have limitations; thus, efforts are underway to improve the discriminatory power of ASCVD models. OBJECTIVE: We sought to evaluate the discriminatory power of social media posts to predict the 10-year risk for ASCVD...
Autores principales: | Andy, Anietie U, Guntuku, Sharath C, Adusumalli, Srinath, Asch, David A, Groeneveld, Peter W, Ungar, Lyle H, Merchant, Raina M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411430/ https://www.ncbi.nlm.nih.gov/pubmed/33605888 http://dx.doi.org/10.2196/24473 |
Ejemplares similares
-
Public Priorities and Concerns Regarding COVID-19 in an Online Discussion Forum: Longitudinal Topic Modeling
por: Stokes, Daniel C., et al.
Publicado: (2020) -
Social media language of healthcare super-utilizers
por: Guntuku, Sharath Chandra, et al.
Publicado: (2021) -
Variability in Language used on Social Media prior to Hospital Visits
por: Guntuku, Sharath Chandra, et al.
Publicado: (2020) -
Author Correction: Variability in Language used on Social Media Prior to Hospital Visits
por: Guntuku, Sharath Chandra, et al.
Publicado: (2020) -
Evaluating the predictability of medical conditions from social media posts
por: Merchant, Raina M., et al.
Publicado: (2019)