Cargando…

Copy number variations of chromosome 17p11.2 region in children with development delay and in fetuses with abnormal imaging findings

BACKGROUND: Deletion and duplication of the 3.7 Mb region in 17p11.2 result in two syndromes, Smith-Magenis syndrome and Potocki-Lupski syndrome, which are well-known development disorders. The purpose of this study was to determine the prevalence, genetic characteristics and clinical phenotypes of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuanyuan, Liu, Xiaoliang, Gao, Haiming, He, Rong, Chu, Guoming, Zhao, Yanyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411507/
https://www.ncbi.nlm.nih.gov/pubmed/34470638
http://dx.doi.org/10.1186/s12920-021-01065-z
Descripción
Sumario:BACKGROUND: Deletion and duplication of the 3.7 Mb region in 17p11.2 result in two syndromes, Smith-Magenis syndrome and Potocki-Lupski syndrome, which are well-known development disorders. The purpose of this study was to determine the prevalence, genetic characteristics and clinical phenotypes of 17p11.2 deletion/duplication in Chinese children with development delay and in fetuses with potential congenital defects. METHODS: 7077 children with development delay and/or intellectual disability were screened by multiplex ligation-dependent probe amplification P245 assay. 7319 fetuses with potential congenital defects were tested using next generation sequencing technique. RESULTS: 417 of 7077 pediatric patients were determined to carry chromosome imbalance. 28 (28/7077, 0.4%) cases had imbalance at chromosome 17p11.2. Among them, 12 cases (42.9%) had heterozygous deletions and 16 cases (57.1%) had heterozygous duplications. The clinical phenotypes were variable, including neurobehavioral disorders, craniofacial/skeletal anomalies, immunologic defects, ocular problems and organ malformations. 263 of 7319 fetuses were recognized to have genomic copy number variations. Only 2 of them were found to harbor 17p11.2 imbalance. The fetus with deletion presented with ventricular septal defect and the fetus with duplication had cerebral ventricle dilation. CONCLUSION: Our study highlights the phenotypic variability associated with 17p11.2 variations in China. The results further expand the phenotypic spectrum of SMS/PTLS and increase awareness of these disruptive mutations among clinicians.