Cargando…
Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint
Here we investigated the role of hydrogen bonding in the design of supramolecular azopolymers with a highly directional and constrained azobenzene–chain interaction involving the aromatic ring of the photoactive molecule, by exploiting the 2-aminopyrimidine/carboxylic acid supramolecular synthon as...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411878/ https://www.ncbi.nlm.nih.gov/pubmed/34594563 http://dx.doi.org/10.1039/d1tc02266k |
_version_ | 1783747363729309696 |
---|---|
author | Borbone, Fabio Oscurato, Stefano Luigi Del Sorbo, Salvatore Pota, Filippo Salvatore, Marcella Reda, Francesco Maddalena, Pasqualino Centore, Roberto Ambrosio, Antonio |
author_facet | Borbone, Fabio Oscurato, Stefano Luigi Del Sorbo, Salvatore Pota, Filippo Salvatore, Marcella Reda, Francesco Maddalena, Pasqualino Centore, Roberto Ambrosio, Antonio |
author_sort | Borbone, Fabio |
collection | PubMed |
description | Here we investigated the role of hydrogen bonding in the design of supramolecular azopolymers with a highly directional and constrained azobenzene–chain interaction involving the aromatic ring of the photoactive molecule, by exploiting the 2-aminopyrimidine/carboxylic acid supramolecular synthon as the tool for molecular recognition. We have shown that this approach is advantageous for producing affordable and versatile photopatternable azomaterials by complexation with polyacrylic acid (PAA). Molecular model complexes were successfully prepared and characterized by X-ray diffraction analysis and FTIR spectroscopy to reveal the multiple, non-ionic interaction occurring between the azobenzene units and the polymer chains. Surface photopatterning of thin films, driven by the typical mass migration phenomenon occurring in azopolymers, resulted strongly enhanced with increasing azobenzene content until equimolar composition. Results show that polymers with synthon-based azobenzenes markedly outperform single H-bonded systems bearing azomolecules with similar structure and electronic properties. We finally demonstrated that the azobenzene units can be easily extracted from a photopatterned film by a simple solvent rinse and without any chemical pre-treatment, leaving the periodicity of the inscribed surface relief gratings unaltered. This result was enabled by the orthogonal solubility of the components in the supramolecular system. |
format | Online Article Text |
id | pubmed-8411878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-84118782021-09-28 Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint Borbone, Fabio Oscurato, Stefano Luigi Del Sorbo, Salvatore Pota, Filippo Salvatore, Marcella Reda, Francesco Maddalena, Pasqualino Centore, Roberto Ambrosio, Antonio J Mater Chem C Mater Chemistry Here we investigated the role of hydrogen bonding in the design of supramolecular azopolymers with a highly directional and constrained azobenzene–chain interaction involving the aromatic ring of the photoactive molecule, by exploiting the 2-aminopyrimidine/carboxylic acid supramolecular synthon as the tool for molecular recognition. We have shown that this approach is advantageous for producing affordable and versatile photopatternable azomaterials by complexation with polyacrylic acid (PAA). Molecular model complexes were successfully prepared and characterized by X-ray diffraction analysis and FTIR spectroscopy to reveal the multiple, non-ionic interaction occurring between the azobenzene units and the polymer chains. Surface photopatterning of thin films, driven by the typical mass migration phenomenon occurring in azopolymers, resulted strongly enhanced with increasing azobenzene content until equimolar composition. Results show that polymers with synthon-based azobenzenes markedly outperform single H-bonded systems bearing azomolecules with similar structure and electronic properties. We finally demonstrated that the azobenzene units can be easily extracted from a photopatterned film by a simple solvent rinse and without any chemical pre-treatment, leaving the periodicity of the inscribed surface relief gratings unaltered. This result was enabled by the orthogonal solubility of the components in the supramolecular system. The Royal Society of Chemistry 2021-08-06 /pmc/articles/PMC8411878/ /pubmed/34594563 http://dx.doi.org/10.1039/d1tc02266k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Borbone, Fabio Oscurato, Stefano Luigi Del Sorbo, Salvatore Pota, Filippo Salvatore, Marcella Reda, Francesco Maddalena, Pasqualino Centore, Roberto Ambrosio, Antonio Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint |
title | Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint |
title_full | Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint |
title_fullStr | Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint |
title_full_unstemmed | Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint |
title_short | Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint |
title_sort | enhanced photoinduced mass migration in supramolecular azopolymers by h-bond driven positional constraint |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411878/ https://www.ncbi.nlm.nih.gov/pubmed/34594563 http://dx.doi.org/10.1039/d1tc02266k |
work_keys_str_mv | AT borbonefabio enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT oscuratostefanoluigi enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT delsorbosalvatore enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT potafilippo enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT salvatoremarcella enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT redafrancesco enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT maddalenapasqualino enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT centoreroberto enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint AT ambrosioantonio enhancedphotoinducedmassmigrationinsupramolecularazopolymersbyhbonddrivenpositionalconstraint |