Cargando…
Coordination and Consonance Between Interacting, Improvising Musicians
Joint action (JA) is ubiquitous in our cognitive lives. From basketball teams to teams of surgeons, humans often coordinate with one another to achieve some common goal. Idealized laboratory studies of group behavior have begun to elucidate basic JA mechanisms, but little is understood about how the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412203/ https://www.ncbi.nlm.nih.gov/pubmed/34485792 http://dx.doi.org/10.1162/opmi_a_00036 |
Sumario: | Joint action (JA) is ubiquitous in our cognitive lives. From basketball teams to teams of surgeons, humans often coordinate with one another to achieve some common goal. Idealized laboratory studies of group behavior have begun to elucidate basic JA mechanisms, but little is understood about how these mechanisms scale up in more sophisticated and open-ended JA that occurs in the wild. We address this gap by examining coordination in a paragon domain for creative joint expression: improvising jazz musicians. Coordination in jazz music subserves an aesthetic goal: the generation of a collective musical expression comprising coherent, highly nuanced musical structure (e.g., rhythm, harmony). In our study, dyads of professional jazz pianists improvised in a “coupled,” mutually adaptive condition, and an “overdubbed” condition that precluded mutual adaptation, as occurs in common studio recording practices. Using a model of musical tonality, we quantify the flow of rhythmic and harmonic information between musicians as a function of interaction condition. Our analyses show that mutually adapting dyads achieve greater temporal alignment and produce more consonant harmonies. These musical signatures of coordination were preferred by independent improvisers and naive listeners, who gave higher quality ratings to coupled interactions despite being blind to condition. We present these results and discuss their implications for music technology and JA research more generally. |
---|