Cargando…
Classifying muscle parameters with artificial neural networks and simulated lateral pinch data
OBJECTIVE: Hill-type muscle models are widely employed in simulations of human movement. Yet, the parameters underlying these models are difficult or impossible to measure in vivo. Prior studies demonstrate that Hill-type muscle parameters are encoded within dynamometric data. But, a generalizable a...
Autores principales: | Kearney, Kalyn M., Harley, Joel B., Nichols, Jennifer A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412284/ https://www.ncbi.nlm.nih.gov/pubmed/34473706 http://dx.doi.org/10.1371/journal.pone.0255103 |
Ejemplares similares
-
Artificial neural network classifier predicts neuroblastoma patients’ outcome
por: Cangelosi, Davide, et al.
Publicado: (2016) -
Reliability of the Pinch Strength with Digitalized Pinch Dynamometer
por: Shin, Heesuk, et al.
Publicado: (2012) -
Effect of pinch types on pinch force sense in healthy adults
por: Li, Lin, et al.
Publicado: (2022) -
Artificial neural network EMG classifier for functional hand grasp
movements prediction
por: Gandolla, Marta, et al.
Publicado: (2016) -
Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial Neural Networks
por: Berus, Lucijano, et al.
Publicado: (2018)