Cargando…
Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins
Finding optimal parameters for force fields used in molecular simulation is a challenging and time-consuming task, partly due to the difficulty of tuning multiple parameters at once. Automatic differentiation presents a general solution: run a simulation, obtain gradients of a loss function with res...
Autores principales: | Greener, Joe G., Jones, David T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412298/ https://www.ncbi.nlm.nih.gov/pubmed/34473813 http://dx.doi.org/10.1371/journal.pone.0256990 |
Ejemplares similares
-
Machine Learning of Coarse-Grained Molecular Dynamics
Force Fields
por: Wang, Jiang, et al.
Publicado: (2019) -
A Generic Force Field for Protein Coarse-Grained Molecular Dynamics Simulation
por: Gu, Junfeng, et al.
Publicado: (2012) -
Coarse-Grained Simulations Using a Multipolar Force Field Model
por: Chiu, Shuo-Feng, et al.
Publicado: (2018) -
COGITO: A Coarse-Grained Force Field for the Simulation
of Macroscopic Properties of Triacylglycerides
por: Cordina, Robert J., et al.
Publicado: (2023) -
Martini 3 Coarse-Grained
Force Field for Carbohydrates
por: Grünewald, Fabian, et al.
Publicado: (2022)