Cargando…

Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants

Pork processing plants were apparent hotspots for SARS-CoV2 in the spring of 2020. As a result, the swine industry was confronted with a major occupational health, financial, and animal welfare crisis. The objective of this work was to describe the epidemiological situation within processing plants,...

Descripción completa

Detalles Bibliográficos
Autores principales: VanderWaal, Kimberly, Black, Lora, Hodge, Judy, Bedada, Addisalem, Dee, Scott
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412359/
https://www.ncbi.nlm.nih.gov/pubmed/34473726
http://dx.doi.org/10.1371/journal.pone.0249143
_version_ 1783747437827981312
author VanderWaal, Kimberly
Black, Lora
Hodge, Judy
Bedada, Addisalem
Dee, Scott
author_facet VanderWaal, Kimberly
Black, Lora
Hodge, Judy
Bedada, Addisalem
Dee, Scott
author_sort VanderWaal, Kimberly
collection PubMed
description Pork processing plants were apparent hotspots for SARS-CoV2 in the spring of 2020. As a result, the swine industry was confronted with a major occupational health, financial, and animal welfare crisis. The objective of this work was to describe the epidemiological situation within processing plants, develop mathematical models to simulate transmission in these plants, and test the effectiveness of routine PCR screening at minimizing SARS-CoV2 circulation. Cumulative incidence of clinical (PCR-confirmed) disease plateaued at ~2.5% to 25% across the three plants studied here. For larger outbreaks, antibody prevalence was approximately 30% to 40%. Secondly, we developed a mathematical model that accounts for asymptomatic, pre-symptomatic, and background “community” transmission. By calibrating this model to observed epidemiological data, we estimated the initial reproduction number (R) of the virus. Across plants, R generally ranged between 2 and 4 during the initial phase, but subsequently declined to ~1 after two to three weeks, most likely as a result of implementation/compliance with biosecurity measures in combination with population immunity. Using the calibrated model to simulate a range of possible scenarios, we show that the effectiveness of routine PCR-screening at minimizing disease spread was far more influenced by testing frequency than by delays in results, R, or background community transmission rates. Testing every three days generally averted about 25% to 40% of clinical cases across a range of assumptions, while testing every 14 days typically averted 7 to 13% of clinical cases. However, the absolute number of additional clinical cases expected and averted was influenced by whether there was residual immunity from a previous peak (i.e., routine testing is implemented after the workforce had experienced an initial outbreak). In contrast, when using PCR-screening to prevent outbreaks or in the early stages of an outbreak, even frequent testing may not prevent a large outbreak within the workforce. This research helps to identify protocols that minimize risk to occupational safety and health and support continuity of business for U.S. processing plants. While the model was calibrated to meat processing plants, the structure of the model and insights about testing are generalizable to other settings where large number of people work in close proximity.
format Online
Article
Text
id pubmed-8412359
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-84123592021-09-03 Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants VanderWaal, Kimberly Black, Lora Hodge, Judy Bedada, Addisalem Dee, Scott PLoS One Research Article Pork processing plants were apparent hotspots for SARS-CoV2 in the spring of 2020. As a result, the swine industry was confronted with a major occupational health, financial, and animal welfare crisis. The objective of this work was to describe the epidemiological situation within processing plants, develop mathematical models to simulate transmission in these plants, and test the effectiveness of routine PCR screening at minimizing SARS-CoV2 circulation. Cumulative incidence of clinical (PCR-confirmed) disease plateaued at ~2.5% to 25% across the three plants studied here. For larger outbreaks, antibody prevalence was approximately 30% to 40%. Secondly, we developed a mathematical model that accounts for asymptomatic, pre-symptomatic, and background “community” transmission. By calibrating this model to observed epidemiological data, we estimated the initial reproduction number (R) of the virus. Across plants, R generally ranged between 2 and 4 during the initial phase, but subsequently declined to ~1 after two to three weeks, most likely as a result of implementation/compliance with biosecurity measures in combination with population immunity. Using the calibrated model to simulate a range of possible scenarios, we show that the effectiveness of routine PCR-screening at minimizing disease spread was far more influenced by testing frequency than by delays in results, R, or background community transmission rates. Testing every three days generally averted about 25% to 40% of clinical cases across a range of assumptions, while testing every 14 days typically averted 7 to 13% of clinical cases. However, the absolute number of additional clinical cases expected and averted was influenced by whether there was residual immunity from a previous peak (i.e., routine testing is implemented after the workforce had experienced an initial outbreak). In contrast, when using PCR-screening to prevent outbreaks or in the early stages of an outbreak, even frequent testing may not prevent a large outbreak within the workforce. This research helps to identify protocols that minimize risk to occupational safety and health and support continuity of business for U.S. processing plants. While the model was calibrated to meat processing plants, the structure of the model and insights about testing are generalizable to other settings where large number of people work in close proximity. Public Library of Science 2021-09-02 /pmc/articles/PMC8412359/ /pubmed/34473726 http://dx.doi.org/10.1371/journal.pone.0249143 Text en © 2021 VanderWaal et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
VanderWaal, Kimberly
Black, Lora
Hodge, Judy
Bedada, Addisalem
Dee, Scott
Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants
title Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants
title_full Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants
title_fullStr Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants
title_full_unstemmed Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants
title_short Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants
title_sort modeling transmission dynamics and effectiveness of worker screening programs for sars-cov-2 in pork processing plants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412359/
https://www.ncbi.nlm.nih.gov/pubmed/34473726
http://dx.doi.org/10.1371/journal.pone.0249143
work_keys_str_mv AT vanderwaalkimberly modelingtransmissiondynamicsandeffectivenessofworkerscreeningprogramsforsarscov2inporkprocessingplants
AT blacklora modelingtransmissiondynamicsandeffectivenessofworkerscreeningprogramsforsarscov2inporkprocessingplants
AT hodgejudy modelingtransmissiondynamicsandeffectivenessofworkerscreeningprogramsforsarscov2inporkprocessingplants
AT bedadaaddisalem modelingtransmissiondynamicsandeffectivenessofworkerscreeningprogramsforsarscov2inporkprocessingplants
AT deescott modelingtransmissiondynamicsandeffectivenessofworkerscreeningprogramsforsarscov2inporkprocessingplants