Cargando…
Few-shot contrastive learning for image classification and its application to insulator identification
This paper presents a novel discriminative Few-shot learning architecture based on batch compact loss. Currently, Convolutional Neural Network (CNN) has achieved reasonably good performance in image recognition. Most existing CNN methods facilitate classifiers to learn discriminating patterns to ide...
Autores principales: | Li, Liang, Jin, Weidong, Huang, Yingkun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412402/ https://www.ncbi.nlm.nih.gov/pubmed/34764617 http://dx.doi.org/10.1007/s10489-021-02769-6 |
Ejemplares similares
-
Insights into few shot learning approaches for image scene classification
por: Soudy, Mohamed, et al.
Publicado: (2021) -
FSCC: Few-Shot Learning for Macromolecule Classification Based on Contrastive Learning and Distribution Calibration in Cryo-Electron Tomography
por: Gao, Shan, et al.
Publicado: (2022) -
Efficient few-shot machine learning for classification of EBSD patterns
por: Kaufmann, Kevin, et al.
Publicado: (2021) -
Weakly Correlated Knowledge Integration for Few-shot Image Classification
por: Yang, Chun, et al.
Publicado: (2022) -
Few-Shot Fine-Grained Image Classification via GNN
por: Zhou, Xiangyu, et al.
Publicado: (2022)