Cargando…

Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes

[Image: see text] The mechanisms of C–H bond insertion and alkene cycloaddition were investigated theoretically using five model systems: group 13 analogues of the four-membered nucleophilic N-heterocyclic carbenes (NHCs) (1E; E = group 13 element). The theoretical findings indicate that, except for...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zheng-Feng, Su, Ming-Der
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412915/
https://www.ncbi.nlm.nih.gov/pubmed/34497916
http://dx.doi.org/10.1021/acsomega.1c02958
_version_ 1783747553411465216
author Zhang, Zheng-Feng
Su, Ming-Der
author_facet Zhang, Zheng-Feng
Su, Ming-Der
author_sort Zhang, Zheng-Feng
collection PubMed
description [Image: see text] The mechanisms of C–H bond insertion and alkene cycloaddition were investigated theoretically using five model systems: group 13 analogues of the four-membered nucleophilic N-heterocyclic carbenes (NHCs) (1E; E = group 13 element). The theoretical findings indicate that, except for 1B with H(2)C=CH(2), these four-membered NHCs undergo insertion and [1 + 2] cycloaddition reactions with difficulty because their activation barriers are quite high (31 kcal/mol). The theoretically confirmed chemical inertness of the four-membered NHCs 1Ga and 1In might explain why they have been experimentally detected at room temperature. Additionally, our theoretical observations indicate that the reactivity of these four-membered NHCs featuring a central group 13 element follows the order 1B ≫ 1Al > 1Ga > 1In > 1Tl. The theoretical examination suggests that the smaller the atomic radius of the central group 13 element in the four-membered NHC analogue is, the larger the aromaticity of this carbenic molecule is, the higher the basicity of this carbenic molecule in nature is, the larger its nucleophilic attack on other oncoming molecules is, the smaller the barrier heights of its C–H bond insertion and [1 + 2] cycloaddition reactions will be, the higher its exothermicities for these products will be, and thus, the greater its reactivity will be. Moreover, the present theoretical findings reveal that the reactivity of 1B is governed by its highest occupied molecular orbital, a nonbonding sp(2) lone pair orbital. In contrast, the reactivity of the four heavier 1E′ (E′ = Al, Ga, In, and Tl) molecules is mainly determined by their lowest unoccupied molecular orbital, a vacant p−π orbital. The conclusions gained from this study allow many predictions to be made.
format Online
Article
Text
id pubmed-8412915
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-84129152021-09-07 Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes Zhang, Zheng-Feng Su, Ming-Der ACS Omega [Image: see text] The mechanisms of C–H bond insertion and alkene cycloaddition were investigated theoretically using five model systems: group 13 analogues of the four-membered nucleophilic N-heterocyclic carbenes (NHCs) (1E; E = group 13 element). The theoretical findings indicate that, except for 1B with H(2)C=CH(2), these four-membered NHCs undergo insertion and [1 + 2] cycloaddition reactions with difficulty because their activation barriers are quite high (31 kcal/mol). The theoretically confirmed chemical inertness of the four-membered NHCs 1Ga and 1In might explain why they have been experimentally detected at room temperature. Additionally, our theoretical observations indicate that the reactivity of these four-membered NHCs featuring a central group 13 element follows the order 1B ≫ 1Al > 1Ga > 1In > 1Tl. The theoretical examination suggests that the smaller the atomic radius of the central group 13 element in the four-membered NHC analogue is, the larger the aromaticity of this carbenic molecule is, the higher the basicity of this carbenic molecule in nature is, the larger its nucleophilic attack on other oncoming molecules is, the smaller the barrier heights of its C–H bond insertion and [1 + 2] cycloaddition reactions will be, the higher its exothermicities for these products will be, and thus, the greater its reactivity will be. Moreover, the present theoretical findings reveal that the reactivity of 1B is governed by its highest occupied molecular orbital, a nonbonding sp(2) lone pair orbital. In contrast, the reactivity of the four heavier 1E′ (E′ = Al, Ga, In, and Tl) molecules is mainly determined by their lowest unoccupied molecular orbital, a vacant p−π orbital. The conclusions gained from this study allow many predictions to be made. American Chemical Society 2021-08-20 /pmc/articles/PMC8412915/ /pubmed/34497916 http://dx.doi.org/10.1021/acsomega.1c02958 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Zhang, Zheng-Feng
Su, Ming-Der
Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes
title Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes
title_full Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes
title_fullStr Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes
title_full_unstemmed Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes
title_short Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes
title_sort insights into the factors controlling the origin of activation barriers in group 13 analogues of the four-membered n-heterocyclic carbenes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412915/
https://www.ncbi.nlm.nih.gov/pubmed/34497916
http://dx.doi.org/10.1021/acsomega.1c02958
work_keys_str_mv AT zhangzhengfeng insightsintothefactorscontrollingtheoriginofactivationbarriersingroup13analoguesofthefourmemberednheterocycliccarbenes
AT sumingder insightsintothefactorscontrollingtheoriginofactivationbarriersingroup13analoguesofthefourmemberednheterocycliccarbenes