Cargando…

Electronic Mechanism of Martensitic Transformation in Nb-doped NiTi Alloys: A First-Principles Investigation

[Image: see text] The effect of Nb on the crystal structures and electronic mechanism of martensitic transformation in Ni(50)Ti(50–x)Nb(x) alloys is investigated by first principles. The lattice parameters, the formation energy, the middle eigenvalue of the transformation stretch tensor (λ(2)), and...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiaolan, Shang, Jiaxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412941/
https://www.ncbi.nlm.nih.gov/pubmed/34497897
http://dx.doi.org/10.1021/acsomega.1c02601
Descripción
Sumario:[Image: see text] The effect of Nb on the crystal structures and electronic mechanism of martensitic transformation in Ni(50)Ti(50–x)Nb(x) alloys is investigated by first principles. The lattice parameters, the formation energy, the middle eigenvalue of the transformation stretch tensor (λ(2)), and the energy difference between the parent and martensite (ΔE) as a function of Nb content x (x = 0, 2.08, 6.25, 8.33, 10.42, 12.5, 18.75) are calculated. Lattice parameters increase with the increase of Nb content. The formation energies of the parent B2 phase, martensite orthorhombic B19, and monoclinic B19′ increase with the increase of Nb content. It is also found that at ≤10.42 at. % Nb, the martensite stable phase is monoclinic structure B19′; at >10.42 at. % Nb, the orthorhombic crystal structure B19 is formed. The energy difference between the parent and martensite means that the transformation temperature decreases with increasing Nb concentration at Nb ≤ 10.42 at. % and increases at >10.42 at. % Nb. The λ(2) of the NiTiNb alloys have the same value of about 0.95 with low Nb content. Furthermore, the electronic structure mechanisms behind the martensitic transformations are discussed in detail based on the density of states.