Cargando…
Diagnosis and Management of Obesity Hypoventilation Syndrome during Labor
Obesity hypoventilation syndrome (OHS) is a disorder in which patients with a body mass index ≥30 kg/m(2) develop awake hypercapnia with a partial pressure of carbon dioxide ≥45 mm Hg, in the absence of other diseases that may produce alveolar hypoventilation. Additional clinical features include sl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413020/ https://www.ncbi.nlm.nih.gov/pubmed/34484837 http://dx.doi.org/10.1155/2021/8096212 |
Sumario: | Obesity hypoventilation syndrome (OHS) is a disorder in which patients with a body mass index ≥30 kg/m(2) develop awake hypercapnia with a partial pressure of carbon dioxide ≥45 mm Hg, in the absence of other diseases that may produce alveolar hypoventilation. Additional clinical features include sleep disordered breathing, restrictive lung disease, polycythemia, hypoxemia, and an increased serum bicarbonate concentration (≥27 mEq/L). Anesthesia providers should be familiar with OHS because it is often undiagnosed, it is associated with a higher mortality rate than obstructive sleep apnea, and it is projected to increase in prevalence along with the obesity epidemic. In this case, a 33-year-old obese woman with presumed OHS developed respiratory acidosis during induction of labor. Continuous positive airway pressure treatment was initiated, but the patient continued to have hypercapnia. A cesarean delivery was recommended. The patient had baseline orthopnea due to her body habitus; thus, despite adequate labor analgesia, a cesarean delivery was completed with general endotracheal anesthesia. We believe this patient had OHS despite a serum bicarbonate <27 mEq/L, a partial pressure of oxygen >70 mm Hg, and a hemoglobin <16 g/dL, which would typically rule out OHS. Pregnant women experience a decrease in serum bicarbonate concentration due to progesterone-mediated hyperventilation, an increase in arterial oxygenation from increased minute ventilation and higher cardiac output, and a decrease in hemoglobin due to the physiologic anemia of pregnancy. Thus, OHS may be defined differently in pregnant than in non-pregnant patients. |
---|