Cargando…
A new approach using the genetic algorithm for parameter estimation in multiple linear regression with long-tailed symmetric distributed error terms: An application to the Covid-19 data
Maximum likelihood (ML) estimators of the model parameters in multiple linear regression are obtained using genetic algorithm (GA) when the distribution of the error terms is long-tailed symmetric. We compare the efficiencies of the ML estimators obtained using GA with the corresponding ML estimator...
Autores principales: | Yalçınkaya, Abdullah, Balay, İklim Gedik, Şenoǧlu, Birdal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413307/ https://www.ncbi.nlm.nih.gov/pubmed/34493885 http://dx.doi.org/10.1016/j.chemolab.2021.104372 |
Ejemplares similares
-
Error Estimation for the Linearized Auto-Localization Algorithm
por: Guevara, Jorge, et al.
Publicado: (2012) -
Mathematical algorithms for linear regression
por: Späth, Helmuth, et al.
Publicado: (1991) -
An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model
por: Wu, Jibo
Publicado: (2014) -
Estimating nonlinear regression errors without doing regression
por: Pi, H, et al.
Publicado: (1994) -
Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
por: Lukman, Adewale F., et al.
Publicado: (2020)