Cargando…

Relativistic nucleon–nucleon potentials in a spin-dependent three-dimensional approach

The matrix elements of relativistic nucleon–nucleon (NN) potentials are calculated directly from the nonrelativistic potentials as a function of relative NN momentum vectors, without a partial wave decomposition. To this aim, the quadratic operator relation between the relativistic and nonrelativist...

Descripción completa

Detalles Bibliográficos
Autores principales: Hadizadeh, M. R., Radin, M., Nazari, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413446/
https://www.ncbi.nlm.nih.gov/pubmed/34475425
http://dx.doi.org/10.1038/s41598-021-96924-1
Descripción
Sumario:The matrix elements of relativistic nucleon–nucleon (NN) potentials are calculated directly from the nonrelativistic potentials as a function of relative NN momentum vectors, without a partial wave decomposition. To this aim, the quadratic operator relation between the relativistic and nonrelativistic NN potentials is formulated in momentum-helicity basis states. It leads to a single integral equation for the two-nucleon (2N) spin-singlet state, and four coupled integral equations for two-nucleon spin-triplet states, which are solved by an iterative method. Our numerical analysis indicates that the relativistic NN potential obtained using CD-Bonn potential reproduces the deuteron binding energy and neutron-proton elastic scattering differential and total cross-sections with high accuracy.