Cargando…
Rapid identification of wood species using XRF and neural network machine learning
An innovative approach for the rapid identification of wood species is presented. By combining X-ray fluorescence spectrometry with convolutional neural network machine learning, 48 different wood specimens were clearly differentiated and identified with a 99% accuracy. Wood species identification i...
Autores principales: | Shugar, Aaron N., Drake, B. Lee, Kelley, Greg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413463/ https://www.ncbi.nlm.nih.gov/pubmed/34475421 http://dx.doi.org/10.1038/s41598-021-96850-2 |
Ejemplares similares
-
Author Correction: Rapid identification of wood species using XRF and neural network machine learning
por: Shugar, Aaron N., et al.
Publicado: (2022) -
Portable XRF Technology to Quantify Pb in Bone In Vivo
por: Specht, Aaron James, et al.
Publicado: (2014) -
Quantifying calcium carbonate and organic carbon content in marine sediments from XRF-scanning spectra with a machine learning approach
por: Lee, An-Sheng, et al.
Publicado: (2022) -
XAFS XRF beamline with users SESAME
por: Caraban Gonzalez, Noemi
Publicado: (2018) -
Compressive Sensing for Dynamic XRF Scanning
por: Kourousias, George, et al.
Publicado: (2020)