Cargando…

The interaction of heat shock proteins with cellular membranes: a historical perspective

The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on the surface of cancer cells and their insertion into art...

Descripción completa

Detalles Bibliográficos
Autores principales: De Maio, Antonio, Hightower, Lawrence
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413713/
https://www.ncbi.nlm.nih.gov/pubmed/34478113
http://dx.doi.org/10.1007/s12192-021-01228-y
Descripción
Sumario:The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on the surface of cancer cells and their insertion into artificial lipid bilayers. Today, the association of several HSP with lipid membranes is well established. However, the mechanisms for membrane insertion have been elusive. There is conclusive evidence indicating that HSP70s have a great selectivity for negatively charged phospholipids, whereas other HSP have a broader spectrum of lipid specificity. HSP70 also oligomerizes upon membrane insertion, forming ion conductance channels. The functional role of HSP70 lipid interactions appears related to membrane stabilization that may play a role during cell membrane biogenesis. They could also play a role as membrane chaperones as well as during endocytosis, microautophagy, and signal transduction. Moreover, HSP membrane association is a key component in the extracellular export of these proteins. The presence of HSP70 on the surface of cancer cells and its interaction with lysosome membranes have been envisioned as potential therapeutic targets. Thus, the biology and function of HSP membrane association are reaching a new level of excitement. This review is an attempt to preserve the recollection of the pioneering contributions of many investigators that have participated in this endeavor.