Cargando…

Early post‐treatment blood oxygenation level‐dependent responses to emotion processing associated with clinical response to pharmacological treatment in major depressive disorder

INTRODUCTION: Pre‐treatment blood oxygenation level‐dependent (BOLD) functional magnetic resonance imaging (fMRI) has been used for the early identification of patients with major depressive disorder (MDD) who later respond or fail to respond to medication. However, BOLD responses early after treatm...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Rebecca J., Brown, Elliot C., Clark, Darren L., Pike, G. Bruce, Ramasubbu, Rajamannar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413787/
https://www.ncbi.nlm.nih.gov/pubmed/34333866
http://dx.doi.org/10.1002/brb3.2287
Descripción
Sumario:INTRODUCTION: Pre‐treatment blood oxygenation level‐dependent (BOLD) functional magnetic resonance imaging (fMRI) has been used for the early identification of patients with major depressive disorder (MDD) who later respond or fail to respond to medication. However, BOLD responses early after treatment initiation may offer insight into early neural changes associated with later clinical response. The present study evaluated both pre‐treatment and early post‐treatment fMRI responses to an emotion processing task, to further our understanding of neural changes associated with a successful response to pharmacological intervention. METHODS: MDD patients who responded (n = 22) and failed to respond (n = 12) after 8 weeks of treatment with either citalopram or quetiapine extended release, and healthy controls (n = 18) underwent two fMRI scans, baseline (pre‐treatment), and early post‐treatment (one week after treatment commencement). Participants completed an emotional face matching task at both scans. RESULTS: Using threshold‐free cluster enhancement (TFCE) and non‐parametric permutation testing, fMRI activation maps showed that after one week of treatment, responders demonstrated increased activation in the left parietal lobule, precentral gyrus, and bilateral insula (all P < 0.05 threshold‐free cluster enhancement (TFCE) family‐wise error‐corrected) to negative facial expressions. Non‐responders showed some small increases in the precentral gyrus, while controls showed no differences between scans. Compared to non‐responders, responders showed some increased activation in the superior parietal lobule and middle temporal gyrus at the post‐treatment scan. There were no group differences between responders, non‐responders, and controls at baseline. CONCLUSIONS: One week after treatment commencement, BOLD signal changes in the parietal lobules, insula, and middle temporal gyrus were related to clinical response to pharmacological treatment.