Cargando…
miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats
AIM: Drug‐resistant epilepsy (DRE), most subsequently developing refractory epilepsy, causes a significant burden to the society. microRNAs have been demonstrated as key regulators and therapeutic targets in epilepsy. Accordingly, the aim of the present study was to test whether miR‐485 could be a p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413801/ https://www.ncbi.nlm.nih.gov/pubmed/34291586 http://dx.doi.org/10.1002/brb3.2247 |
_version_ | 1783747705380536320 |
---|---|
author | Wang, Kaixuan Wu, Jing Wang, Jiangping Jiang, Kewen |
author_facet | Wang, Kaixuan Wu, Jing Wang, Jiangping Jiang, Kewen |
author_sort | Wang, Kaixuan |
collection | PubMed |
description | AIM: Drug‐resistant epilepsy (DRE), most subsequently developing refractory epilepsy, causes a significant burden to the society. microRNAs have been demonstrated as key regulators and therapeutic targets in epilepsy. Accordingly, the aim of the present study was to test whether miR‐485 could be a potential target for DRE. METHODS AND RESULTS: An in vivo DRE model was developed in Sprague–Dawley rats by lithium chloride‐pilocarpine and screened by antiepileptic drugs. We found that miR‐485‐5p in hippocampus was significant downregulated at early stage and recovered to normal level at late stage of DRE. Overexpression of miR‐485‐5p in dentate gyrus (DG) of hippocampus in DRE rats could significantly decrease the frequency of seizures and the numbers of epileptiform spikes of hippocampal DG neuron, and could specifically decrease SV2A expression without affecting PSD‐95 expression in DG. Furthermore, miR‐485‐5p overexpression could significantly downregulate the expression of efflux transporter related to multidrug resistance (ABCC1) in hippocampus at late stage of DRE. Finally, a specific expression pattern of neuronal signaling‐transduction proteins (LRP4, MDM4, p53, and TMBIM1) for DRE was observed, and miR‐485‐5p overexpression could modulate these proteins’ expression levels toward normal in hippocampus both at early and late stage of DRE. CONCLUSION: Collectively, these results suggest that miR‐485 was a potential target for anti‐DRE, and this effects might be partially via miR‐485‐5p/homeostatic‐synaptic plasticity‐molecule axis and/or targeting efflux transporter (ABCC1) and other neuronal signaling‐transduction proteins (LRP4, MDM4, p53, and TMBIM1). |
format | Online Article Text |
id | pubmed-8413801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84138012021-09-07 miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats Wang, Kaixuan Wu, Jing Wang, Jiangping Jiang, Kewen Brain Behav Original Research AIM: Drug‐resistant epilepsy (DRE), most subsequently developing refractory epilepsy, causes a significant burden to the society. microRNAs have been demonstrated as key regulators and therapeutic targets in epilepsy. Accordingly, the aim of the present study was to test whether miR‐485 could be a potential target for DRE. METHODS AND RESULTS: An in vivo DRE model was developed in Sprague–Dawley rats by lithium chloride‐pilocarpine and screened by antiepileptic drugs. We found that miR‐485‐5p in hippocampus was significant downregulated at early stage and recovered to normal level at late stage of DRE. Overexpression of miR‐485‐5p in dentate gyrus (DG) of hippocampus in DRE rats could significantly decrease the frequency of seizures and the numbers of epileptiform spikes of hippocampal DG neuron, and could specifically decrease SV2A expression without affecting PSD‐95 expression in DG. Furthermore, miR‐485‐5p overexpression could significantly downregulate the expression of efflux transporter related to multidrug resistance (ABCC1) in hippocampus at late stage of DRE. Finally, a specific expression pattern of neuronal signaling‐transduction proteins (LRP4, MDM4, p53, and TMBIM1) for DRE was observed, and miR‐485‐5p overexpression could modulate these proteins’ expression levels toward normal in hippocampus both at early and late stage of DRE. CONCLUSION: Collectively, these results suggest that miR‐485 was a potential target for anti‐DRE, and this effects might be partially via miR‐485‐5p/homeostatic‐synaptic plasticity‐molecule axis and/or targeting efflux transporter (ABCC1) and other neuronal signaling‐transduction proteins (LRP4, MDM4, p53, and TMBIM1). John Wiley and Sons Inc. 2021-07-21 /pmc/articles/PMC8413801/ /pubmed/34291586 http://dx.doi.org/10.1002/brb3.2247 Text en © 2021 The Authors. Brain and Behavior published by Wiley Periodicals LLC https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Wang, Kaixuan Wu, Jing Wang, Jiangping Jiang, Kewen miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats |
title | miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats |
title_full | miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats |
title_fullStr | miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats |
title_full_unstemmed | miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats |
title_short | miR‐485's anti‐drug resistant epilepsy effects by regulating SV2A/PSD‐95 and targeting ABCC1 and neuronal signaling‐transduction proteins in hippocampus of rats |
title_sort | mir‐485's anti‐drug resistant epilepsy effects by regulating sv2a/psd‐95 and targeting abcc1 and neuronal signaling‐transduction proteins in hippocampus of rats |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413801/ https://www.ncbi.nlm.nih.gov/pubmed/34291586 http://dx.doi.org/10.1002/brb3.2247 |
work_keys_str_mv | AT wangkaixuan mir485santidrugresistantepilepsyeffectsbyregulatingsv2apsd95andtargetingabcc1andneuronalsignalingtransductionproteinsinhippocampusofrats AT wujing mir485santidrugresistantepilepsyeffectsbyregulatingsv2apsd95andtargetingabcc1andneuronalsignalingtransductionproteinsinhippocampusofrats AT wangjiangping mir485santidrugresistantepilepsyeffectsbyregulatingsv2apsd95andtargetingabcc1andneuronalsignalingtransductionproteinsinhippocampusofrats AT jiangkewen mir485santidrugresistantepilepsyeffectsbyregulatingsv2apsd95andtargetingabcc1andneuronalsignalingtransductionproteinsinhippocampusofrats |