Cargando…
Using a Convolutional Neural Network to Predict Remission of Diabetes After Gastric Bypass Surgery: Machine Learning Study From the Scandinavian Obesity Surgery Register
BACKGROUND: Prediction of diabetes remission is an important topic in the evaluation of patients with type 2 diabetes (T2D) before bariatric surgery. Several high-quality predictive indices are available, but artificial intelligence algorithms offer the potential for higher predictive capability. OB...
Autores principales: | Cao, Yang, Näslund, Ingmar, Näslund, Erik, Ottosson, Johan, Montgomery, Scott, Stenberg, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414302/ https://www.ncbi.nlm.nih.gov/pubmed/34420921 http://dx.doi.org/10.2196/25612 |
Ejemplares similares
-
Deep Learning Neural Networks to Predict Serious Complications After Bariatric Surgery: Analysis of Scandinavian Obesity Surgery Registry Data
por: Cao, Yang, et al.
Publicado: (2020) -
Factors determining chance of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a nationwide cohort study in 8057 Swedish patients
por: Stenberg, Erik, et al.
Publicado: (2021) -
The association between socioeconomic factors and weight loss 5 years after gastric bypass surgery
por: Stenberg, Erik, et al.
Publicado: (2020) -
Incidence of Kidney Stones After Metabolic and Bariatric Surgery—Data from the Scandinavian Obesity Surgery Registry
por: Laurenius, Anna, et al.
Publicado: (2023) -
Duration of type 2 diabetes and remission rates after bariatric surgery in Sweden 2007–2015: A registry-based cohort study
por: Jans, Anders, et al.
Publicado: (2019)