Cargando…
Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ)
BACKGROUND: Identification of bacterial taxa associated with diseases, exposures, and other variables of interest offers a more comprehensive understanding of the role of microbes in many conditions. However, despite considerable research in statistical methods for association testing with microbiom...
Autores principales: | Ling, Wodan, Zhao, Ni, Plantinga, Anna M., Launer, Lenore J., Fodor, Anthony A., Meyer, Katie A., Wu, Michael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414689/ https://www.ncbi.nlm.nih.gov/pubmed/34474689 http://dx.doi.org/10.1186/s40168-021-01129-3 |
Ejemplares similares
-
Batch effects removal for microbiome data via conditional quantile regression
por: Ling, Wodan, et al.
Publicado: (2022) -
Compositional zero-inflated network estimation for microbiome data
por: Ha, Min Jin, et al.
Publicado: (2020) -
Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data
por: Bai, Wei, et al.
Publicado: (2021) -
Identification of microbial interaction network: zero-inflated latent Ising model based approach
por: Zhou, Jie, et al.
Publicado: (2020) -
A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection
por: Mahachie John, Jestinah M, et al.
Publicado: (2013)