Cargando…
DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding
BACKGROUND: Prediction of the drug-target interaction (DTI) is a critical step in the drug repurposing process, which can effectively reduce the following workload for experimental verification of potential drugs’ properties. In recent studies, many machine-learning-based methods have been proposed...
Autores principales: | Yue, Yang, He, Shan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414716/ https://www.ncbi.nlm.nih.gov/pubmed/34479477 http://dx.doi.org/10.1186/s12859-021-04327-w |
Ejemplares similares
-
Extreme Ultraviolet
Wave Packet Interferometry of
the Autoionizing HeNe Dimer
por: Uhl, Daniel, et al.
Publicado: (2022) -
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
por: Liu, Guannan, et al.
Publicado: (2021) -
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021) -
Optimizing drug–target interaction prediction based on random walk on heterogeneous networks
por: Seal, Abhik, et al.
Publicado: (2015)