Cargando…
Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives
Mathematical models based on fractional-order differential equations have recently gained interesting insights into epidemiological phenomena, by virtue of their memory effect and nonlocal nature. This paper investigates the nonlinear dynamic behavior of a novel COVID-19 pandemic model described by...
Autores principales: | Debbouche, Nadjette, Ouannas, Adel, Batiha, Iqbal M., Grassi, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415202/ https://www.ncbi.nlm.nih.gov/pubmed/34511721 http://dx.doi.org/10.1007/s11071-021-06867-5 |
Ejemplares similares
-
Generating Multidirectional Variable Hidden Attractors via Newly Commensurate and Incommensurate Non-Equilibrium Fractional-Order Chaotic Systems
por: Debbouche, Nadjette, et al.
Publicado: (2021) -
Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives
por: Debbouche, Nadjette, et al.
Publicado: (2022) -
Coexisting commensurate and incommensurate charge ordered phases in CoO
por: Negi, Devendra, et al.
Publicado: (2021) -
Universality in commensurate-incommensurate phase transitions
por: Hu, B, et al.
Publicado: (1994) -
Chaos in fractional system with extreme events
por: Ouannas, Adel, et al.
Publicado: (2021)