Cargando…

Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis

Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aure...

Descripción completa

Detalles Bibliográficos
Autores principales: Masters, Elysia A., Muthukrishnan, Gowrishankar, Ho, Lananh, Gill, Ann Lindley, de Mesy Bentley, Karen L., Galloway, Chad A., McGrath, James L., Awad, Hani A., Gill, Steven R., Schwarz, Edward M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415456/
https://www.ncbi.nlm.nih.gov/pubmed/34484165
http://dx.doi.org/10.3389/fmicb.2021.723498
_version_ 1783747973770903552
author Masters, Elysia A.
Muthukrishnan, Gowrishankar
Ho, Lananh
Gill, Ann Lindley
de Mesy Bentley, Karen L.
Galloway, Chad A.
McGrath, James L.
Awad, Hani A.
Gill, Steven R.
Schwarz, Edward M.
author_facet Masters, Elysia A.
Muthukrishnan, Gowrishankar
Ho, Lananh
Gill, Ann Lindley
de Mesy Bentley, Karen L.
Galloway, Chad A.
McGrath, James L.
Awad, Hani A.
Gill, Steven R.
Schwarz, Edward M.
author_sort Masters, Elysia A.
collection PubMed
description Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxis- and haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (Δpbp3, Δatl, and ΔmreC) and surface adhesin mutants (ΔclfA and ΔsasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (μSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo.
format Online
Article
Text
id pubmed-8415456
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-84154562021-09-04 Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis Masters, Elysia A. Muthukrishnan, Gowrishankar Ho, Lananh Gill, Ann Lindley de Mesy Bentley, Karen L. Galloway, Chad A. McGrath, James L. Awad, Hani A. Gill, Steven R. Schwarz, Edward M. Front Microbiol Microbiology Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxis- and haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (Δpbp3, Δatl, and ΔmreC) and surface adhesin mutants (ΔclfA and ΔsasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (μSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo. Frontiers Media S.A. 2021-08-16 /pmc/articles/PMC8415456/ /pubmed/34484165 http://dx.doi.org/10.3389/fmicb.2021.723498 Text en Copyright © 2021 Masters, Muthukrishnan, Ho, Gill, de Mesy Bentley, Galloway, McGrath, Awad, Gill and Schwarz. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Masters, Elysia A.
Muthukrishnan, Gowrishankar
Ho, Lananh
Gill, Ann Lindley
de Mesy Bentley, Karen L.
Galloway, Chad A.
McGrath, James L.
Awad, Hani A.
Gill, Steven R.
Schwarz, Edward M.
Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis
title Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis
title_full Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis
title_fullStr Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis
title_full_unstemmed Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis
title_short Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis
title_sort staphylococcus aureus cell wall biosynthesis modulates bone invasion and osteomyelitis pathogenesis
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415456/
https://www.ncbi.nlm.nih.gov/pubmed/34484165
http://dx.doi.org/10.3389/fmicb.2021.723498
work_keys_str_mv AT masterselysiaa staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT muthukrishnangowrishankar staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT holananh staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT gillannlindley staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT demesybentleykarenl staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT gallowaychada staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT mcgrathjamesl staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT awadhania staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT gillstevenr staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis
AT schwarzedwardm staphylococcusaureuscellwallbiosynthesismodulatesboneinvasionandosteomyelitispathogenesis