Cargando…
A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation
BACKGROUND: Recently, food science has been garnering a lot of attention. There are many open research questions on food interactions, as one of the main environmental factors, with other health-related entities such as diseases, treatments, and drugs. In the last 2 decades, a large amount of work h...
Autores principales: | Stojanov, Riste, Popovski, Gorjan, Cenikj, Gjorgjina, Koroušić Seljak, Barbara, Eftimov, Tome |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415558/ https://www.ncbi.nlm.nih.gov/pubmed/34383671 http://dx.doi.org/10.2196/28229 |
Ejemplares similares
-
FoodBase corpus: a new resource of annotated food entities
por: Popovski, Gorjan, et al.
Publicado: (2019) -
CafeteriaFCD Corpus: Food Consumption Data Annotated with Regard to Different Food Semantic Resources
por: Ispirova, Gordana, et al.
Publicado: (2022) -
CafeteriaSA corpus: scientific abstracts annotated across different food semantic resources
por: Cenikj, Gjorgjina, et al.
Publicado: (2022) -
From language models to large-scale food and biomedical knowledge graphs
por: Cenikj, Gjorgjina, et al.
Publicado: (2023) -
A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations
por: Eftimov, Tome, et al.
Publicado: (2017)