Cargando…
Integrative Analysis of Gene Expression Through One-Class Logistic Regression Machine Learning Identifies Stemness Features in Multiple Myeloma
Tumor progression includes the obtainment of progenitor and stem cell-like features and the gradual loss of a differentiated phenotype. Stemness was defined as the potential for differentiation and self-renewal from the cell of origin. Previous studies have confirmed the effective application of ste...
Autores principales: | Ban, Chunmei, Yang, Feiyan, Wei, Min, Liu, Qin, Wang, Jiankun, Chen, Lei, Lu, Liuting, Xie, Dongmei, Liu, Lie, Huang, Jinxiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415636/ https://www.ncbi.nlm.nih.gov/pubmed/34484287 http://dx.doi.org/10.3389/fgene.2021.666561 |
Ejemplares similares
-
Integrative analysis of gene expression and DNA methylation through one‐class logistic regression machine learning identifies stemness features in medulloblastoma
por: Lian, Hao, et al.
Publicado: (2019) -
Firth logistic regression for rare variant association tests
por: Wang, Xuefeng
Publicado: (2014) -
A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
por: Dezem, Felipe Segato, et al.
Publicado: (2023) -
Logistic Regression for Machine Learning in Process Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019) -
Calculus of thought: neuromorphic logistic regression in cognitive machines
por: Rice, Daniel M
Publicado: (2014)