Cargando…
Hybrid Improved Bird Swarm Algorithm with Extreme Learning Machine for Short-Term Power Prediction in Photovoltaic Power Generation System
When a photovoltaic (PV) system is connected to the electric power grid, the power system reliability may be exposed to a threat due to its inherent randomness and volatility. Consequently, predicting PV power generation becomes necessary for reasonable power distribution scheduling. A hybrid model...
Autores principales: | Wu, Dongchun, Kan, Jiarong, Lin, Hsiung-Cheng, Li, Shaoyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416407/ https://www.ncbi.nlm.nih.gov/pubmed/34484324 http://dx.doi.org/10.1155/2021/6638436 |
Ejemplares similares
-
Optimal power flow using hybrid firefly and particle swarm optimization algorithm
por: Khan, Abdullah, et al.
Publicado: (2020) -
Multi-Swarm Algorithm for Extreme Learning Machine Optimization
por: Bacanin, Nebojsa, et al.
Publicado: (2022) -
The impact of climate change on photovoltaic power generation in Europe
por: Jerez, Sonia, et al.
Publicado: (2015) -
Power Disturbance Monitoring through Techniques for Novelty Detection on Wind Power and Photovoltaic Generation
por: Gonzalez-Abreu, Artvin Darien, et al.
Publicado: (2023) -
Photovoltaic Power Generation Forecasting Using a Novel Hybrid Intelligent Model in Smart Grid
por: Boum, Alexandre Teplaira, et al.
Publicado: (2022)