Cargando…
Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome
Background: Distinguishing ICU patients with candidaemia can help with the precise prescription of antifungal drugs to create personalized guidelines. Previous prediction models of candidaemia have primarily used traditional logistic models and had some limitations. In this study, we developed a mac...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416760/ https://www.ncbi.nlm.nih.gov/pubmed/34490306 http://dx.doi.org/10.3389/fmed.2021.720926 |
_version_ | 1783748254347821056 |
---|---|
author | Yuan, Siyi Sun, Yunbo Xiao, Xiongjian Long, Yun He, Huaiwu |
author_facet | Yuan, Siyi Sun, Yunbo Xiao, Xiongjian Long, Yun He, Huaiwu |
author_sort | Yuan, Siyi |
collection | PubMed |
description | Background: Distinguishing ICU patients with candidaemia can help with the precise prescription of antifungal drugs to create personalized guidelines. Previous prediction models of candidaemia have primarily used traditional logistic models and had some limitations. In this study, we developed a machine learning algorithm trained to predict candidaemia in patients with new-onset systemic inflammatory response syndrome (SIRS). Methods: This retrospective, observational study used clinical information collected between January 2013 and December 2017 from three hospitals. The ICU patient data were used to train 4 machine learning algorithms–XGBoost, Support Vector Machine (SVM), Random Forest (RF), ExtraTrees (ET)–and a logistic regression (LR) model to predict patients with candidaemia. Results: Of the 8,002 cases of new-onset SIRS (in 7,932 patients) included in the analysis, 137 new-onset SIRS cases (in 137 patients) were blood culture positive for candidaemia. Risk factors, such as fungal colonization, diabetes, acute kidney injury, the total number of parenteral nutrition days and renal replacement therapy, were important predictors of candidaemia. The XGBoost machine learning model outperformed the other models in distinguishing patients with candidaemia [XGBoost vs. SVM vs. RF vs. ET vs. LR; area under the curve (AUC): 0.92 vs. 0.86 vs. 0.91 vs. 0.90 vs. 0.52, respectively]. The XGBoost model had a sensitivity of 84%, specificity of 89% and negative predictive value of 99.6% at the best cut-off value. Conclusions: Machine learning algorithms can potentially predict candidaemia in the ICU and have better efficiency than previous models. These prediction models can be used to guide antifungal treatment for ICU patients when SIRS occurs. |
format | Online Article Text |
id | pubmed-8416760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84167602021-09-05 Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome Yuan, Siyi Sun, Yunbo Xiao, Xiongjian Long, Yun He, Huaiwu Front Med (Lausanne) Medicine Background: Distinguishing ICU patients with candidaemia can help with the precise prescription of antifungal drugs to create personalized guidelines. Previous prediction models of candidaemia have primarily used traditional logistic models and had some limitations. In this study, we developed a machine learning algorithm trained to predict candidaemia in patients with new-onset systemic inflammatory response syndrome (SIRS). Methods: This retrospective, observational study used clinical information collected between January 2013 and December 2017 from three hospitals. The ICU patient data were used to train 4 machine learning algorithms–XGBoost, Support Vector Machine (SVM), Random Forest (RF), ExtraTrees (ET)–and a logistic regression (LR) model to predict patients with candidaemia. Results: Of the 8,002 cases of new-onset SIRS (in 7,932 patients) included in the analysis, 137 new-onset SIRS cases (in 137 patients) were blood culture positive for candidaemia. Risk factors, such as fungal colonization, diabetes, acute kidney injury, the total number of parenteral nutrition days and renal replacement therapy, were important predictors of candidaemia. The XGBoost machine learning model outperformed the other models in distinguishing patients with candidaemia [XGBoost vs. SVM vs. RF vs. ET vs. LR; area under the curve (AUC): 0.92 vs. 0.86 vs. 0.91 vs. 0.90 vs. 0.52, respectively]. The XGBoost model had a sensitivity of 84%, specificity of 89% and negative predictive value of 99.6% at the best cut-off value. Conclusions: Machine learning algorithms can potentially predict candidaemia in the ICU and have better efficiency than previous models. These prediction models can be used to guide antifungal treatment for ICU patients when SIRS occurs. Frontiers Media S.A. 2021-08-19 /pmc/articles/PMC8416760/ /pubmed/34490306 http://dx.doi.org/10.3389/fmed.2021.720926 Text en Copyright © 2021 Yuan, Sun, Xiao, Long and He. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Yuan, Siyi Sun, Yunbo Xiao, Xiongjian Long, Yun He, Huaiwu Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome |
title | Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome |
title_full | Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome |
title_fullStr | Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome |
title_full_unstemmed | Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome |
title_short | Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome |
title_sort | using machine learning algorithms to predict candidaemia in icu patients with new-onset systemic inflammatory response syndrome |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416760/ https://www.ncbi.nlm.nih.gov/pubmed/34490306 http://dx.doi.org/10.3389/fmed.2021.720926 |
work_keys_str_mv | AT yuansiyi usingmachinelearningalgorithmstopredictcandidaemiainicupatientswithnewonsetsystemicinflammatoryresponsesyndrome AT sunyunbo usingmachinelearningalgorithmstopredictcandidaemiainicupatientswithnewonsetsystemicinflammatoryresponsesyndrome AT xiaoxiongjian usingmachinelearningalgorithmstopredictcandidaemiainicupatientswithnewonsetsystemicinflammatoryresponsesyndrome AT longyun usingmachinelearningalgorithmstopredictcandidaemiainicupatientswithnewonsetsystemicinflammatoryresponsesyndrome AT hehuaiwu usingmachinelearningalgorithmstopredictcandidaemiainicupatientswithnewonsetsystemicinflammatoryresponsesyndrome |