Cargando…
A Review on Signal Processing Approaches to Reduce Calibration Time in EEG-Based Brain–Computer Interface
In an electroencephalogram- (EEG-) based brain–computer interface (BCI), a subject can directly communicate with an electronic device using his EEG signals in a safe and convenient way. However, the sensitivity to noise/artifact and the non-stationarity of EEG signals result in high inter-subject/se...
Autores principales: | Huang, Xin, Xu, Yilu, Hua, Jing, Yi, Wenlong, Yin, Hua, Hu, Ronghua, Wang, Shiyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417074/ https://www.ncbi.nlm.nih.gov/pubmed/34489636 http://dx.doi.org/10.3389/fnins.2021.733546 |
Ejemplares similares
-
A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain–Computer Interfaces
por: Ko, Wonjun, et al.
Publicado: (2021) -
Spike-Representation of EEG Signals for Performance Enhancement of Brain-Computer Interfaces
por: Singanamalla, Sai Kalyan Ranga, et al.
Publicado: (2022) -
Dual attentive fusion for EEG-based brain-computer interfaces
por: Du, Yuanhua, et al.
Publicado: (2022) -
A Dry EEG-System for Scientific Research and Brain–Computer Interfaces
por: Zander, Thorsten Oliver, et al.
Publicado: (2011) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012)