Cargando…
A Brain-Inspired Homeostatic Neuron Based on Phase-Change Memories for Efficient Neuromorphic Computing
One of the main goals of neuromorphic computing is the implementation and design of systems capable of dynamic evolution with respect to their own experience. In biology, synaptic scaling is the homeostatic mechanism which controls the frequency of neural spikes within stable boundaries for improved...
Autores principales: | Muñoz-Martin, Irene, Bianchi, Stefano, Hashemkhani, Shahin, Pedretti, Giacomo, Melnic, Octavian, Ielmini, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417123/ https://www.ncbi.nlm.nih.gov/pubmed/34489628 http://dx.doi.org/10.3389/fnins.2021.709053 |
Ejemplares similares
-
Bio-Inspired Techniques in a Fully Digital Approach for Lifelong Learning
por: Bianchi, Stefano, et al.
Publicado: (2020) -
One-step regression and classification with cross-point resistive memory arrays
por: Sun, Zhong, et al.
Publicado: (2020) -
Memristive and CMOS Devices for Neuromorphic Computing
por: Milo, Valerio, et al.
Publicado: (2020) -
A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems
por: Wang, Zhongqiang, et al.
Publicado: (2015) -
Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
por: Pedretti, G., et al.
Publicado: (2017)