Cargando…
Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence
BACKGROUND: Prostate cancer (PCa) is an immune-responsive disease. The current study sought to explore a robust immune-related prognostic gene signature for PCa. METHODS: Data were retrieved from the tumor Genome Atlas (TCGA) database and GSE46602 database for performing the least absolute shrinkage...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417385/ https://www.ncbi.nlm.nih.gov/pubmed/34490029 http://dx.doi.org/10.3389/fgene.2021.639642 |
_version_ | 1783748369962762240 |
---|---|
author | Fu, Min Wang, Qiang Wang, Hanbo Dai, Yun Wang, Jin Kang, Weiting Cui, Zilian Jin, Xunbo |
author_facet | Fu, Min Wang, Qiang Wang, Hanbo Dai, Yun Wang, Jin Kang, Weiting Cui, Zilian Jin, Xunbo |
author_sort | Fu, Min |
collection | PubMed |
description | BACKGROUND: Prostate cancer (PCa) is an immune-responsive disease. The current study sought to explore a robust immune-related prognostic gene signature for PCa. METHODS: Data were retrieved from the tumor Genome Atlas (TCGA) database and GSE46602 database for performing the least absolute shrinkage and selection operator (LASSO) cox regression model analysis. Immune related genes (IRGs) data were retrieved from ImmPort database. RESULTS: The weighted gene co-expression network analysis (WGCNA) showed that nine functional modules are correlated with the biochemical recurrence of PCa, including 259 IRGs. Univariate regression analysis and survival analysis identified 35 IRGs correlated with the prognosis of PCa. LASSO Cox regression model analysis was used to construct a risk prognosis model comprising 18 IRGs. Multivariate regression analysis showed that risk score was an independent predictor of the prognosis of PCa. A nomogram comprising a combination of this model and other clinical features showed good prediction accuracy in predicting the prognosis of PCa. Further analysis showed that different risk groups harbored different gene mutations, differential transcriptome expression and different immune infiltration levels. Patients in the high-risk group exhibited more gene mutations compared with those in the low-risk group. Patients in the high-risk groups showed high-frequency mutations in TP53. Immune infiltration analysis showed that M2 macrophages were significantly enriched in the high-risk group implying that it affected prognosis of PCa patients. In addition, immunostimulatory genes were differentially expressed in the high-risk group compared with the low-risk group. BIRC5, as an immune-related gene in the prediction model, was up-regulated in 87.5% of prostate cancer tissues. Knockdown of BIRC5 can inhibit cell proliferation and migration. CONCLUSION: In summary, a risk prognosis model based on IGRs was developed. A nomogram comprising a combination of this model and other clinical features showed good accuracy in predicting the prognosis of PCa. This model provides a basis for personalized treatment of PCa and can help clinicians in making effective treatment decisions. |
format | Online Article Text |
id | pubmed-8417385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84173852021-09-05 Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence Fu, Min Wang, Qiang Wang, Hanbo Dai, Yun Wang, Jin Kang, Weiting Cui, Zilian Jin, Xunbo Front Genet Genetics BACKGROUND: Prostate cancer (PCa) is an immune-responsive disease. The current study sought to explore a robust immune-related prognostic gene signature for PCa. METHODS: Data were retrieved from the tumor Genome Atlas (TCGA) database and GSE46602 database for performing the least absolute shrinkage and selection operator (LASSO) cox regression model analysis. Immune related genes (IRGs) data were retrieved from ImmPort database. RESULTS: The weighted gene co-expression network analysis (WGCNA) showed that nine functional modules are correlated with the biochemical recurrence of PCa, including 259 IRGs. Univariate regression analysis and survival analysis identified 35 IRGs correlated with the prognosis of PCa. LASSO Cox regression model analysis was used to construct a risk prognosis model comprising 18 IRGs. Multivariate regression analysis showed that risk score was an independent predictor of the prognosis of PCa. A nomogram comprising a combination of this model and other clinical features showed good prediction accuracy in predicting the prognosis of PCa. Further analysis showed that different risk groups harbored different gene mutations, differential transcriptome expression and different immune infiltration levels. Patients in the high-risk group exhibited more gene mutations compared with those in the low-risk group. Patients in the high-risk groups showed high-frequency mutations in TP53. Immune infiltration analysis showed that M2 macrophages were significantly enriched in the high-risk group implying that it affected prognosis of PCa patients. In addition, immunostimulatory genes were differentially expressed in the high-risk group compared with the low-risk group. BIRC5, as an immune-related gene in the prediction model, was up-regulated in 87.5% of prostate cancer tissues. Knockdown of BIRC5 can inhibit cell proliferation and migration. CONCLUSION: In summary, a risk prognosis model based on IGRs was developed. A nomogram comprising a combination of this model and other clinical features showed good accuracy in predicting the prognosis of PCa. This model provides a basis for personalized treatment of PCa and can help clinicians in making effective treatment decisions. Frontiers Media S.A. 2021-08-19 /pmc/articles/PMC8417385/ /pubmed/34490029 http://dx.doi.org/10.3389/fgene.2021.639642 Text en Copyright © 2021 Fu, Wang, Wang, Dai, Wang, Kang, Cui and Jin. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Fu, Min Wang, Qiang Wang, Hanbo Dai, Yun Wang, Jin Kang, Weiting Cui, Zilian Jin, Xunbo Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence |
title | Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence |
title_full | Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence |
title_fullStr | Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence |
title_full_unstemmed | Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence |
title_short | Immune-Related Genes Are Prognostic Markers for Prostate Cancer Recurrence |
title_sort | immune-related genes are prognostic markers for prostate cancer recurrence |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417385/ https://www.ncbi.nlm.nih.gov/pubmed/34490029 http://dx.doi.org/10.3389/fgene.2021.639642 |
work_keys_str_mv | AT fumin immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence AT wangqiang immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence AT wanghanbo immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence AT daiyun immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence AT wangjin immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence AT kangweiting immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence AT cuizilian immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence AT jinxunbo immunerelatedgenesareprognosticmarkersforprostatecancerrecurrence |