Cargando…
Machine Learning Approach Identified Multi-Platform Factors for Caries Prediction in Child-Mother Dyads
Untreated tooth decays affect nearly one third of the world and is the most prevalent disease burden among children. The disease progression of tooth decay is multifactorial and involves a prolonged decrease in pH, resulting in the demineralization of tooth surfaces. Bacterial species that are capab...
Autores principales: | Wu, Tong Tong, Xiao, Jin, Sohn, Michael B., Fiscella, Kevin A., Gilbert, Christie, Grier, Alex, Gill, Ann L., Gill, Steve R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417465/ https://www.ncbi.nlm.nih.gov/pubmed/34490147 http://dx.doi.org/10.3389/fcimb.2021.727630 |
Ejemplares similares
-
Multimodal Data Integration Reveals Mode of Delivery and Snack Consumption Outrank Salivary Microbiome in Association With Caries Outcome in Thai Children
por: Wu, Tong Tong, et al.
Publicado: (2022) -
Novel Clustering Methods Identified Three Caries Status-Related Clusters Based on Oral Microbiome in Thai Mother–Child Dyads
por: Manning, Samantha, et al.
Publicado: (2023) -
Comparative Analysis of the Microbial Profiles in Supragingival Plaque Samples Obtained From Twins With Discordant Caries Phenotypes and Their Mothers
por: Zheng, Yuqiao, et al.
Publicado: (2018) -
Untargeted metabolomics of saliva in caries-active and caries-free children in the mixed dentition
por: Li, Yueheng, et al.
Publicado: (2023) -
Lactobacillus plantarum Disrupts S. mutans–C. albicans Cross-Kingdom Biofilms
por: Zeng, Yan, et al.
Publicado: (2022)