Cargando…
Automated Classification of Whole Body Plethysmography Waveforms to Quantify Breathing Patterns
Whole body plethysmography (WBP) monitors respiratory rate and depth but conventional analysis fails to capture the diversity of waveforms. Our first purpose was to develop a waveform cluster analysis method for quantifying dynamic changes in respiratory waveforms. WBP data, from adult Sprague-Dawle...
Autores principales: | Sunshine, Michael D., Fuller, David D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417563/ https://www.ncbi.nlm.nih.gov/pubmed/34489719 http://dx.doi.org/10.3389/fphys.2021.690265 |
Ejemplares similares
-
Unsupervised classification of plethysmography signals with advanced visual representations
por: Germain, Thibaut, et al.
Publicado: (2023) -
Measurement of breathing in patients with post-COVID-19 using structured light plethysmography (SLP)
por: Alhuthail, Eyas, et al.
Publicado: (2021) -
Can the single-breath helium dilution method predict
lung volumes as measured by whole-body plethysmography?
por: Coertjens, Patrícia Chaves, et al.
Publicado: (2013) -
Measuring Ventilatory Activity with Structured Light Plethysmography (SLP) Reduces Instrumental Observer Effect and Preserves Tidal Breathing Variability in Healthy and COPD
por: Niérat, Marie-Cécile, et al.
Publicado: (2017) -
plethy: management of whole body plethysmography data in R
por: Bottomly, Daniel, et al.
Publicado: (2015)