Cargando…
Interpretable, Scalable, and Transferrable Functional Projection of Large-Scale Transcriptome Data Using Constrained Matrix Decomposition
Large-scale transcriptome data, such as single-cell RNA-sequencing data, have provided unprecedented resources for studying biological processes at the systems level. Numerous dimensionality reduction methods have been developed to visualize and analyze these transcriptome data. In addition, several...
Autores principales: | Panchy, Nicholas, Watanabe, Kazuhide, Hong, Tian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417714/ https://www.ncbi.nlm.nih.gov/pubmed/34490045 http://dx.doi.org/10.3389/fgene.2021.719099 |
Ejemplares similares
-
Comparative single-cell transcriptomes of dose and time dependent epithelial–mesenchymal spectrums
por: Panchy, Nicholas, et al.
Publicado: (2022) -
Scalable and Robust Regression Methods for Phenome-Wide Association Analysis on Large-Scale Biobank Data
por: Bi, Wenjian, et al.
Publicado: (2021) -
Activités Luigi: Comment le transferrer?
Publicado: (1989) -
An Efficient Computational Model for Large-Scale Prediction of Protein–Protein Interactions Based on Accurate and Scalable Graph Embedding
por: Su, Xiao-Rui, et al.
Publicado: (2021) -
Bias and Class Imbalance in Oncologic Data—Towards Inclusive and Transferrable AI in Large Scale Oncology Data Sets
por: Tasci, Erdal, et al.
Publicado: (2022)