Cargando…
Machine Learning-Based Analysis of Magnetic Resonance Radiomics for the Classification of Gliosarcoma and Glioblastoma
OBJECTIVE: To identify optimal machine-learning methods for the radiomics-based differentiation of gliosarcoma (GSM) from glioblastoma (GBM). MATERIALS AND METHODS: This retrospective study analyzed cerebral magnetic resonance imaging (MRI) data of 83 patients with pathologically diagnosed GSM (58 m...
Autores principales: | Qian, Zenghui, Zhang, Lingling, Hu, Jie, Chen, Shuguang, Chen, Hongyan, Shen, Huicong, Zheng, Fei, Zang, Yuying, Chen, Xuzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417735/ https://www.ncbi.nlm.nih.gov/pubmed/34490097 http://dx.doi.org/10.3389/fonc.2021.699789 |
Ejemplares similares
-
Corrigendum: Machine Learning-Based Analysis of Magnetic Resonance Radiomics for the Classification of Gliosarcoma and Glioblastoma
por: Qian, Zenghui, et al.
Publicado: (2021) -
Differentiation Between Glioblastoma Multiforme and Metastasis From the Lungs and Other Sites Using Combined Clinical/Routine MRI Radiomics
por: Han, Yuqi, et al.
Publicado: (2021) -
Radiogenomic Analysis of Vascular Endothelial Growth Factor in Patients With Glioblastoma
por: Zheng, Fei, et al.
Publicado: (2023) -
Preoperative Magnetic Resonance Imaging Radiomics for Predicting Early Recurrence of Glioblastoma
por: Wang, Jing, et al.
Publicado: (2021) -
Clinical Characteristics of Gliosarcoma and Outcomes From Standardized Treatment Relative to Conventional Glioblastoma
por: Frandsen, Simone, et al.
Publicado: (2019)