Cargando…
An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency
Quasi-static ultrasound elastography (USE) is an imaging modality that measures deformation (i.e. strain) of tissue in response to an applied mechanical force. In USE, the strain modulus is traditionally obtained by deriving the displacement field estimated between a pair of radio-frequency data. In...
Autores principales: | Delaunay, Rémi, Hu, Yipeng, Vercauteren, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417818/ https://www.ncbi.nlm.nih.gov/pubmed/34298531 http://dx.doi.org/10.1088/1361-6560/ac176a |
Ejemplares similares
-
Spatial gradient consistency for unsupervised learning of hyperspectral demosaicking: application to surgical imaging
por: Li, Peichao, et al.
Publicado: (2023) -
Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
por: Ravì, Daniele, et al.
Publicado: (2019) -
Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns
por: Matsubara, Takashi
Publicado: (2017) -
Unsupervised topological learning approach of crystal nucleation
por: Becker, Sébastien, et al.
Publicado: (2022) -
A Bayesian machine learning approach for spatio-temporal prediction of COVID-19 cases
por: Niraula, Poshan, et al.
Publicado: (2022)