Cargando…
A Multimodal Affinity Fusion Network for Predicting the Survival of Breast Cancer Patients
Accurate survival prediction of breast cancer holds significant meaning for improving patient care. Approaches using multiple heterogeneous modalities such as gene expression, copy number alteration, and clinical data have showed significant advantages over those with only one modality for patient s...
Autores principales: | Guo, Weizhou, Liang, Wenbin, Deng, Qingchun, Zou, Xianchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417828/ https://www.ncbi.nlm.nih.gov/pubmed/34490038 http://dx.doi.org/10.3389/fgene.2021.709027 |
Ejemplares similares
-
Attention-Based Multi-NMF Deep Neural Network with Multimodality Data for Breast Cancer Prognosis Model
por: Chen, Hongling, et al.
Publicado: (2019) -
A layer-wise fusion network incorporating self-supervised learning for multimodal MR image synthesis
por: Zhou, Qian, et al.
Publicado: (2022) -
Pixel-level multimodal fusion deep networks for predicting subcellular organelle localization from label-free live-cell imaging
por: Wei, Zhihao, et al.
Publicado: (2022) -
An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data
por: Zhang, Ying, et al.
Publicado: (2018) -
Combining Pathway Identification and Breast Cancer Survival Prediction via Screening-Network Methods
por: Iuliano, Antonella, et al.
Publicado: (2018)