Cargando…

Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study

Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for...

Descripción completa

Detalles Bibliográficos
Autores principales: Pegg, Emily J, McKavanagh, Andrea, Bracewell, R Martyn, Chen, Yachin, Das, Kumar, Denby, Christine, Kreilkamp, Barbara A K, Laiou, Petroula, Marson, Anthony, Mohanraj, Rajiv, Taylor, Jason R, Keller, Simon S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417840/
https://www.ncbi.nlm.nih.gov/pubmed/34514400
http://dx.doi.org/10.1093/braincomms/fcab196
_version_ 1783748464848404480
author Pegg, Emily J
McKavanagh, Andrea
Bracewell, R Martyn
Chen, Yachin
Das, Kumar
Denby, Christine
Kreilkamp, Barbara A K
Laiou, Petroula
Marson, Anthony
Mohanraj, Rajiv
Taylor, Jason R
Keller, Simon S
author_facet Pegg, Emily J
McKavanagh, Andrea
Bracewell, R Martyn
Chen, Yachin
Das, Kumar
Denby, Christine
Kreilkamp, Barbara A K
Laiou, Petroula
Marson, Anthony
Mohanraj, Rajiv
Taylor, Jason R
Keller, Simon S
author_sort Pegg, Emily J
collection PubMed
description Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hypothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state functional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three participants with IGE (10 with WC-IGE and 23 with DR-IGE) and 34 controls were included. Resting state functional MRI networks were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteristic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and betweenness centrality were also measured and ‘hub nodes’ were compared between groups. Outcome measures were assessed across the three groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic path length and average betweenness centrality. There were no clear differences between groups according to seizure control. Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no clear differences in the location of ‘hub nodes’ between groups. The results suggest that, irrespective of seizure control, IGE interictal network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node locations. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodological work is warranted to account for anticorrelations in graph theoretic studies.
format Online
Article
Text
id pubmed-8417840
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-84178402021-09-09 Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study Pegg, Emily J McKavanagh, Andrea Bracewell, R Martyn Chen, Yachin Das, Kumar Denby, Christine Kreilkamp, Barbara A K Laiou, Petroula Marson, Anthony Mohanraj, Rajiv Taylor, Jason R Keller, Simon S Brain Commun Original Article Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hypothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state functional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three participants with IGE (10 with WC-IGE and 23 with DR-IGE) and 34 controls were included. Resting state functional MRI networks were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteristic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and betweenness centrality were also measured and ‘hub nodes’ were compared between groups. Outcome measures were assessed across the three groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic path length and average betweenness centrality. There were no clear differences between groups according to seizure control. Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no clear differences in the location of ‘hub nodes’ between groups. The results suggest that, irrespective of seizure control, IGE interictal network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node locations. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodological work is warranted to account for anticorrelations in graph theoretic studies. Oxford University Press 2021-08-26 /pmc/articles/PMC8417840/ /pubmed/34514400 http://dx.doi.org/10.1093/braincomms/fcab196 Text en © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Pegg, Emily J
McKavanagh, Andrea
Bracewell, R Martyn
Chen, Yachin
Das, Kumar
Denby, Christine
Kreilkamp, Barbara A K
Laiou, Petroula
Marson, Anthony
Mohanraj, Rajiv
Taylor, Jason R
Keller, Simon S
Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study
title Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study
title_full Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study
title_fullStr Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study
title_full_unstemmed Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study
title_short Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study
title_sort functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional mri study
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417840/
https://www.ncbi.nlm.nih.gov/pubmed/34514400
http://dx.doi.org/10.1093/braincomms/fcab196
work_keys_str_mv AT peggemilyj functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT mckavanaghandrea functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT bracewellrmartyn functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT chenyachin functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT daskumar functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT denbychristine functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT kreilkampbarbaraak functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT laioupetroula functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT marsonanthony functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT mohanrajrajiv functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT taylorjasonr functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy
AT kellersimons functionalnetworktopologyindrugresistantandwellcontrolledidiopathicgeneralizedepilepsyarestingstatefunctionalmristudy